Convergence to a new profile of travelling front in Fisher’s population genetics model

Pavel Drábek
Pilsen, Czech Republic

We consider the semilinear Fisher-Kolmogorov-Petrovski-Piscounov equation for the advance of an advantageous gene in biology:

\[
\begin{cases}
\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = f(u) & \text{for } (x, t) \in \mathbb{R} \times \mathbb{R}_+; \\
u(x, 0) = u_0(x) & \text{for } x \in \mathbb{R}.
\end{cases}
\]

In contrast with previous works on this topic, we relax the differentiability hypothesis on \(f \) to being only Hölder-continuous and “one-sided” Lipschitz-continuous (i.e., \(s \mapsto f(s) - Ls: \mathbb{R} \to \mathbb{R} \) is monotone decreasing, for some constant \(L \in \mathbb{R}_+ \)). In particular, our hypotheses allow for the singular derivatives

\[
f'(0) = \lim_{s \to 0} \frac{f(s)}{s} = -\infty \quad \text{and} \quad f'(1) = \lim_{s \to 1} \frac{f(s)}{s - 1} = -\infty.
\]

This type of reaction function \(f \) has been studied extensively in biological models of various kinds of generalized logistic growth.

The fact that reaction function \(f \) is not smooth allows for the introduction of travelling waves with a new profile. We study existence and uniqueness of this new profile, as well as a long-time asymptotic behavior of the solutions of the Cauchy problem to a travelling wave with this profile. Presented results are based on joint paper with P. Takáč entitled “Convergence to travelling waves in Fisher’s population genetics model with a non-Lipschitzian reaction term” and published online in *J. Math. Biol.* on February 14, 2017.

2010 Mathematics Subject Classification: 35Q92, 92D10, 35K91, 35K58.