Applications of critical points results to existence and multiplicity of solutions for elliptic problems with variable exponent

Antonia Chinni
Messina, Italy

A collection of results concerning the existence and multiplicity of solutions for some elliptic problems involving the $p(\cdot)$-Laplacian is presented. The variable exponent p is supposed continuous and defined on Ω where Ω is an open bounded subset of \mathbb{R}^N. The problems taken into account involve equations of the following kinds

$$-\Delta_{p(x)} u = \lambda f(x,u)$$

or

$$-\Delta_{p(x)} u + a(x)|u|^{p(x)-2} u = \lambda f(x,u)$$

with Dirichlet or Neumann boundary conditions.

For such problems the existence of at least three weak solutions, of a non trivial weak solution and of infinitely many weak solution will be established even in presence of a discontinuous non linear term and by using variational techniques. The results, obtained under opportune growth conditions on non linear term, concern the case

$$p^- := \inf_{x \in \Omega} p(x) > N$$

and the more general case

$$1 < p^- < p^+ := \sup_{x \in \Omega} p(x) < +\infty.$$

However a precise interval of parameter λ for which the problems admit weak solutions is provided.

2010 Mathematics Subject Classification: 35J60, 35J20.

References

