Distributed delay differential equations – numerical approach

Jan Böhm
Brno, Czech Republic

We will present a new solution strategy for distributed delay differential equations, i.e.

\[\dot{x}(t) = f \left(t, \int_0^\infty x(t - s)g(s)ds \right), \]

(1)

where \(g \) is a density of some nonnegative random variable. There is a well-known [1] way to transform equation (1) to a system of ordinary differential equations in the case that \(g \) is a density of gamma distribution.

We will show that a density of a nonnegative random variable can be approximated by a sum of densities of gamma distributions. This result can be extended to solve equation (1) numerically.

2010 Mathematics Subject Classification: 34K07.

References