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Nagumo RDE
One dimensional reaction-diffusion equation for u = u(x, t), x ∈ R, t ∈ [0,∞),

∂tu = k∂xxu+ f(u). (PDE)

Two factors:

diffusion k∂xxu . . . spatial spread of a substance
reaction f(u) . . . local dynamics, sources

Motivation: biological, chemical, economic, social ... phenomena

Nagumo equation: f(u) = λu(1− u2)

λ ≥ 0 → bistable case

λ < 0 → monostable case
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Discrete version

Discretization of (PDE) via finite differences:

Spatial variable:

x ∈ Z : ∂2
xxu(x, t) ∼ ∆2

xxu(x− 1, t+ h)

= u(x− 1, t+ h)− 2u(x, t+ h) + u(x+ 1, t+ h)

Time variable:

t ∈ hN0 : ∂tu(x, t) ∼ ∆tu(x, t) =
u(x, t+ h)− u(x, t)

h

Discretization of the right-hand side of (PDE):

explicit (at time t) → existence and uniqueness is simple

implicit (at time t+ h) → existence and uniqueness ???
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Problem

Consider the following implicit discrete Nagumo equation

{
∆tu(x, t) = k∆2

xxu(x− 1, t+ h) + λu(x, t+ h)
(
1− u2(x, t+ h)

)
,

u(x, 0) = ϕ(x),
(E)

with:

x ∈ Z
t ∈ hN0, h > 0

λ ∈ R
ϕ : Z→ R
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Example - infinitely many solutions

let λ = 0 (no reaction) and ϕ(x) = 0 for all x ∈ Z in (E)

for t = h we obtain the following second order difference equation without
initial conditions

u(x+ 1) +
1− 2h

h
u(x) + u(x− 1) = 0, x ∈ Z

one can obtain (using the theory of IVPs for difference equations) that,
e.g., for h < 1

4

u(x) =
u(1)− λ2u(0)

λ1 − λ2
λx1 +

u(1)− λ1u(0)

λ2 − λ1
λx2

with

λ1,2 =
1− 2h±

√
1− 4h

2h
, i.e., λ1 > 1, |λ2| < λ1

if we set for example u(1) = a ∈ [0,∞) and u(0) = 0, then:
1 u(x)→∞ provided a > 0
2 u(x) ≡ 0 provided a = 0

there exist infinitely many solutions of (E) at t = h

there are all unbounded except the vanishing one
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Bounded `2 solutions

we restrict ourselves to locally bounded solutions, i.e.,
{u(x, t)}x∈Z = u(·, t) bounded for every fixed t ∈ hN0

we want to study the variational structure of corresponding energy
functionals

let {ϕ(x)}x∈Z = ϕ ∈ `2(Z) and prove the existence of solution for which
there is

{u(x, t)}x∈Z = u(·, t) ∈ `2(Z) for all fixed t ∈ hN0
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Fixed point problem

define operators L,N : `2 → `2:

(Lu)i := kui−1 − 2kui + kui+1, i ∈ Z

(N(u))i = ui
(
1− u2

i

)
, i ∈ Z

L ∈ L(`2) is negative self-adjoint and N is continuous

(E) is equivalent to the abstract difference equation on `2

{
1
h

(u(·, t+ h)− u(·, t)) = L(u(·, t+ h)) + λN(u(·, t+ h)),
u(·, 0) = ϕ

let t ∈ hN0 be fixed and u(·, t) ∈ `2 known, denoting

b = u(·, t) ∈ `2(Z), u = u(·, t+ h) ∈ `2

we obtain the fixed point problem in `2

u = b+ hL(u) + hλN(u) (FP)
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Variational formulation

the energy functional for (FP) is given by

F(u) =
1− hλ

2
‖u‖22 − (b, u)2 −

h

2
(Lu, u)2 +

hλ

4
‖u‖44

Lemma

ũ ∈ `2 is a critical point of F if and only if ũ is the solution of (FP).

F ∈ C1(`2,R)

there is
(∇F(u), w)2 = (u− b− hL(u)− hλN(u), w)2 .
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Bistable case λ ≥ 0

Theorem

Let λ ≥ 0 and assume h(λ+ 4k) < 1 and ϕ ∈ `2. Then the problem (E) has a
unique solution u(x, t) that exists for all x ∈ Z, t ∈ hN0 and satisfies

‖u(·, t)‖2 <∞ for all t ∈ hN0.

F is globally convex and weakly coercive on `2

F has a global minimizer ⇒ local solution

mathematical induction
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Case λ < 0

The geometry of F changes!

Theorem

Let λ < 0 and assume h(λ+ 4k) < 1 and u(x, t) is a solution of (E) at a fixed
time t ∈ hN0 such that ‖u(·, t)‖2 is "sufficiently small". Then there exists a
solution u(·, t+ h) of the problem (E) at time t+ h such that
‖u(x, t+ h)‖2 <∞.

F locally convex on a ball B(o,R)

F has a local minimizer
only local solution at t+ h

Theorem

Let λ < 0 and assume h(λ+ 4k) ≤ −2 and ‖ϕ‖2 "sufficiently small". Then the
problem (E) has a solution u(x, t) that exists for all x ∈ Z, t ∈ hN0.

more restrictive assumptions on parameters
mathematical induction and ‖u(·, t+ h)‖2 also "sufficiently small" in the
induction step
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Summarizing figure

global ex. and uniq.

global ex.

local ex.

λ

h
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Case λ < 0 and mountain pass geometry

Mountain pass theorem (Ambrosetti, Rabinowitz):

Let X be a real Banach space and F ∈ C1 (X,R) satisfy:

there exists e ∈ X and ρ > 0 such that ‖e‖ > ρ and

inf‖u‖=ρ F(u) > F(o) ≥ F(e), (MP)

the Palais-Smale condition: "Any sequence {un} ⊂ X such that

F(un)→ c ∈ R and ∇F(un)→ o ∈ X (PS-A)

has a convergent subsequence."

Then c := inf
γ∈Γ

max
t∈[0,1]

F(γ(t)) where

Γ := {γ ∈ C([0, 1], X) : γ(0) = o, γ(1) = e} is a critical value of F .

Lemma

Let λ < 0 and assume h(λ+ 4k) < 1 and ‖b‖2 be "sufficiently small". Then
there exist e ∈ `2 and ρ > 0 such that ‖e‖2 > ρ and F satisfies (MP).
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Palais-Smale condition - boundedness

Structure of proof

every {un}n∈N ⊂ `
2 satisfying (PS-A) contains a bounded subsequence

pass to a weakly convergent subsequence un ⇀ u and show that it
converges strongly as well

Lemma

Let λ < 0, h > 0, h(λ+ 4k) < 1, b ∈ `2 and F be the energy functional. Then
every sequence {un} ⊂ `2 satisfying (PS-A) is bounded.

from (PS-A) one can obtain that a Palais-Smale sequence satisfies for a.a.
n ∈ N

K + L‖un‖2 ≥M‖un‖22, K, L,M > 0
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(PS) condition - convergence

pass to a subsequence un ⇀ u

typical mountain pass argument works with

(∇F(un)−∇F(u), un − u)2 → 0.

For our energy functional F we obtain the estimate

(1− hλ)‖un−u‖22 ≤ (∇F(un)−∇F(u), un−u)2−hλ
∑
i∈Z

(
(uni )

3 − u3
i

)
(uni − ui)︸ ︷︷ ︸

PROBLEMATIC TERM

.
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Case λ < 0 - conjectures

We have tried:

use the boundedness of {un}n∈N

(1− hλ+ hλK(h))︸ ︷︷ ︸
it has not to be nonnegative

‖un − u‖22 ≤ (∇F(un)−∇F(u), un − u)2

pass with the limit into the sum in the "problematic term"

Conjecture

Let λ < 0 and assume h(λ+ 4k) < 1 and ‖b‖2 "sufficiently small". Then the
functional F has at least two critical points.

Conjecture

Let λ < 0, h(λ+ 4k) < 1, h > 0 and u(x, t) be a solution of (E) at a fixed
time t ∈ hN0 such that ‖u(·, t)‖2 is "sufficiently small". Then the problem (E)
has at least two solutions u1(x, t+ h), u2(x, t+ h) at time t+ h such that
uj(·, t+ h) ∈ `2, j = 1, 2.
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Summary, open questions

global ex. and uniq.

global ex.

local ex.

λ

h

λ λ < 0 λ ≥ 0(
−∞,− 2

h − 4k
] (

− 2
h − 4k, 1

h − 4k
) [

0, 1
h − 4k

) [
1
h − 4k,∞

)
Geometry of F mountain pass globally convex ?

Existence global local global ?
Uniqueness in `2 ? ? yes ?
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Thank you.
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