Existence and multiplicity for implicit discretization of Nagumo RDE on unbounded domain via variational methods

Jonáš Volek (joint work with Petr Stehlík)

New Technologies for the Information Society (research center) Faculty of Applied Sciences, University of West Bohemia in Pilsen Czech Republic

volek1@ntis.zcu.cz

Differential Equations and Applications 2017 Brno, Czech Republic, September 4

Nagumo RDE

One dimensional reaction-diffusion equation for u = u(x,t), $x \in \mathbb{R}$, $t \in [0,\infty)$, $\partial_t u = k \partial_{xx} u + f(u)$. (PDE)

Two factors:

diffusion	$k\partial_{xx}u$	 spatial spread of a substance
reaction	f(u)	 local dynamics, sources

Motivation: biological, chemical, economic, social ... phenomena

Nagumo equation: $f(u) = \lambda u(1 - u^2)$	J
$\lambda \geq 0 o { m bistable \ case}$	
$\lambda < 0 \rightarrow \text{monostable case}$	
Ionáš Volek Existence and multiplicity for implicit discrete Nagum	

Discretization of (PDE) via finite differences:

Spatial variable:

$$\begin{aligned} x \in \mathbb{Z} : \quad \partial_{xx}^2 u(x,t) \quad \sim \quad \Delta_{xx}^2 u(x-1,t+h) \\ &= u(x-1,t+h) - 2u(x,t+h) + u(x+1,t+h) \end{aligned}$$

Time variable:

$$t \in h\mathbb{N}_0$$
: $\partial_t u(x,t) \sim \Delta_t u(x,t) = \frac{u(x,t+h) - u(x,t)}{h}$

Discretization of the right-hand side of (PDE):

Consider the following implicit discrete Nagumo equation

$$\begin{cases} \Delta_t u(x,t) = k \Delta_{xx}^2 u(x-1,t+h) + \lambda u(x,t+h) \left(1 - u^2(x,t+h) \right), \\ u(x,0) = \varphi(x), \end{cases}$$
(E)

with:

- $x \in \mathbb{Z}$
- $t \in h\mathbb{N}_0$, h > 0
- $\lambda \in \mathbb{R}$
- $\varphi: \mathbb{Z} \to \mathbb{R}$

Example - infinitely many solutions

- let $\lambda = 0$ (no reaction) and $\varphi(x) = 0$ for all $x \in \mathbb{Z}$ in (E)
- for t = h we obtain the following second order difference equation without initial conditions

$$u(x+1) + \frac{1-2h}{h}u(x) + u(x-1) = 0, \quad x \in \mathbb{Z}$$

 $\bullet\,$ one can obtain (using the theory of IVPs for difference equations) that, e.g., for $h<\frac{1}{4}$

$$u(x) = \frac{u(1) - \lambda_2 u(0)}{\lambda_1 - \lambda_2} \lambda_1^x + \frac{u(1) - \lambda_1 u(0)}{\lambda_2 - \lambda_1} \lambda_2^x$$

with

$$\lambda_{1,2} = \frac{1-2h \pm \sqrt{1-4h}}{2h}, \quad \text{i.e.,} \quad \lambda_1 > 1, \quad |\lambda_2| < \lambda_1$$

- if we set for example $u(1)=a\in [0,\infty)$ and u(0)=0, then:
 - $\bigcirc \ u(x) \to \infty \text{ provided } a > 0$
 - $u(x) \equiv 0 \text{ provided } a = 0$
- there exist infinitely many solutions of (E) at t = h
- there are all unbounded except the vanishing one

- we restrict ourselves to locally bounded solutions, i.e., $\{u(x,t)\}_{x\in\mathbb{Z}} = u(\cdot,t)$ bounded for every fixed $t\in h\mathbb{N}_0$
- we want to study the variational structure of corresponding energy functionals
- let $\{\varphi(x)\}_{x\in\mathbb{Z}}=\varphi\in\ell^2(\mathbb{Z})$ and prove the existence of solution for which there is

$$\left\{u(x,t)\right\}_{x\in\mathbb{Z}}=u(\cdot,t)\in\ell^2(\mathbb{Z})\quad\text{for all fixed}\quad t\in h\mathbb{N}_0$$

Fixed point problem

• define operators $L, N: \ell^2 \to \ell^2$:

$$(Lu)_i := ku_{i-1} - 2ku_i + ku_{i+1}, \quad i \in \mathbb{Z}$$

$$(N(u))_i = u_i \left(1 - u_i^2\right), \quad i \in \mathbb{Z}$$

• $L \in \mathcal{L}(\ell^2)$ is negative self-adjoint and N is continuous

• (E) is equivalent to the abstract difference equation on ℓ^2

$$\begin{cases} \frac{1}{h} \left(u(\cdot, t+h) - u(\cdot, t) \right) = L(u(\cdot, t+h)) + \lambda N(u(\cdot, t+h)), \\ u(\cdot, 0) = \varphi \end{cases}$$

• let $t \in h\mathbb{N}_0$ be fixed and $u(\cdot,t) \in \ell^2$ known, denoting

$$b = u(\cdot, t) \in \ell^2(\mathbb{Z}), \quad u = u(\cdot, t+h) \in \ell^2$$

we obtain the fixed point problem in ℓ^2

$$u = b + hL(u) + h\lambda N(u)$$
(FP)

Variational formulation

• the energy functional for (FP) is given by

$$\mathcal{F}(u) = \frac{1 - h\lambda}{2} \|u\|_2^2 - (b, u)_2 - \frac{h}{2}(Lu, u)_2 + \frac{h\lambda}{4} \|u\|_4^4$$

Lemma

 $\tilde{u} \in \ell^2$ is a critical point of \mathcal{F} if and only if \tilde{u} is the solution of (FP).

• $\mathcal{F} \in C^1(\ell^2, \mathbb{R})$

there is

$$(\nabla \mathcal{F}(u), w)_2 = (u - b - hL(u) - h\lambda N(u), w)_2.$$

Theorem

Let $\lambda \geq 0$ and assume $h(\lambda + 4k) < 1$ and $\varphi \in \ell^2$. Then the problem (E) has a unique solution u(x, t) that exists for all $x \in \mathbb{Z}$, $t \in h\mathbb{N}_0$ and satisfies

 $\|u(\cdot,t)\|_2 < \infty$ for all $t \in h\mathbb{N}_0$.

- \mathcal{F} is globally convex and weakly coercive on ℓ^2
- \mathcal{F} has a global minimizer \Rightarrow local solution
- mathematical induction

The geometry of \mathcal{F} changes!

Theorem

Let $\lambda < 0$ and assume $h(\lambda + 4k) < 1$ and u(x, t) is a solution of (E) at a fixed time $t \in h\mathbb{N}_0$ such that $||u(\cdot, t)||_2$ is "sufficiently small". Then there exists a solution $u(\cdot, t + h)$ of the problem (E) at time t + h such that $||u(x, t + h)||_2 < \infty$.

- \mathcal{F} locally convex on a ball $\overline{B}(o, R)$
- ${\cal F}$ has a local minimizer
- only local solution at t + h

Theorem

Let $\lambda < 0$ and assume $h(\lambda + 4k) \leq -2$ and $\|\varphi\|_2$ "sufficiently small". Then the problem (E) has a solution u(x,t) that exists for all $x \in \mathbb{Z}$, $t \in h\mathbb{N}_0$.

- more restrictive assumptions on parameters
- mathematical induction and $||u(\cdot,t+h)||_2$ also "sufficiently small" in the induction step

Summarizing figure

Case $\lambda < 0$ and mountain pass geometry

Mountain pass theorem (Ambrosetti, Rabinowitz):

Let X be a real Banach space and $\mathcal{F} \in C^{1}(X, \mathbb{R})$ satisfy:

$$\inf_{\|u\|=\rho} \mathcal{F}(u) > \mathcal{F}(o) \ge \mathcal{F}(e), \tag{MP}$$

• the Palais-Smale condition: "Any sequence $\{u^n\} \subset X$ such that

$$\mathcal{F}(u^n) \to c \in \mathbb{R}$$
 and $\nabla \mathcal{F}(u^n) \to o \in X$ (PS-A)

has a convergent subsequence."

Then
$$c := \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} \mathcal{F}(\gamma(t))$$
 where
 $\Gamma := \{\gamma \in C([0,1], X) : \gamma(0) = o, \gamma(1) = e\}$ is a critical value of \mathcal{F} .

Lemma

Let $\lambda < 0$ and assume $h(\lambda + 4k) < 1$ and $\|b\|_2$ be "sufficiently small". Then there exist $e \in \ell^2$ and $\rho > 0$ such that $\|e\|_2 > \rho$ and \mathcal{F} satisfies (MP).

Structure of proof

• every $\{u^n\}_{n\in\mathbb{N}}\subset\ell^2$ satisfying (PS-A) contains a bounded subsequence

 $\bullet\,$ pass to a weakly convergent subsequence $u^n\rightharpoonup u$ and show that it converges strongly as well

Lemma

Let $\lambda < 0$, h > 0, $h(\lambda + 4k) < 1$, $b \in \ell^2$ and \mathcal{F} be the energy functional. Then every sequence $\{u^n\} \subset \ell^2$ satisfying (PS-A) is bounded.

• from (PS-A) one can obtain that a Palais-Smale sequence satisfies for a.a. $n \in \mathbb{N}$ $K + L ||u^n||_2 > M ||u^n||_2^2, \quad K, L, M > 0$

- pass to a subsequence $u^n \rightharpoonup u$
- typical mountain pass argument works with

$$(\nabla \mathcal{F}(u^n) - \nabla \mathcal{F}(u), u^n - u)_2 \to 0.$$

For our energy functional ${\mathcal F}$ we obtain the estimate

$$(1-h\lambda)\|u^n-u\|_2^2 \leq (\nabla \mathcal{F}(u^n) - \nabla \mathcal{F}(u), u^n-u)_2 \underbrace{-h\lambda \sum_{i \in \mathbb{Z}} \left((u_i^n)^3 - u_i^3 \right) (u_i^n - u_i)}_{\text{PROBLEMATIC TERM}}.$$

Case $\lambda < 0$ - conjectures

We have tried:

 ${\ }$ use the boundedness of $\{u^n\}_{n\in \mathbb{N}}$

$$\underbrace{(1-h\lambda+h\lambda K(h))}_{\lambda} \|u^n-u\|_2^2 \le (\nabla \mathcal{F}(u^n)-\nabla \mathcal{F}(u),u^n-u)_2$$

it has not to be nonnegative

• pass with the limit into the sum in the "problematic term"

Conjecture

Let $\lambda < 0$ and assume $h(\lambda + 4k) < 1$ and $\|b\|_2$ "sufficiently small". Then the functional \mathcal{F} has at least two critical points.

Conjecture

Let $\lambda < 0$, $h(\lambda + 4k) < 1$, h > 0 and u(x, t) be a solution of (E) at a fixed time $t \in h\mathbb{N}_0$ such that $||u(\cdot, t)||_2$ is "sufficiently small". Then the problem (E) has at least two solutions $u_1(x, t + h)$, $u_2(x, t + h)$ at time t + h such that $u_j(\cdot, t + h) \in \ell^2$, j = 1, 2.

Summary, open questions

λ	$\lambda < 0$		$\lambda \ge 0$	
	$\left(-\infty, -\frac{2}{h} - 4k\right]$	$\left(-\frac{2}{h}-4k,\frac{1}{h}-4k\right)$	$\left[0, \frac{1}{h} - 4k\right)$	$\left[\frac{1}{h} - 4k, \infty\right)$
Geometry of \mathcal{F}	mour	ntain pass	globally convex	?
Existence	global	local	global	?
Uniqueness in ℓ^2	?	?	yes	?

Jonáš Volek Existence and multiplicity for implicit discrete Nagumo RDI

- A. Ambrosetti, P. H. Rabinowitz, *Dual variational methods in critical point theory and applications*, Journal of Functional Analysis **14**(1973), 195–204.
- P. Drábek, J. Milota, Methods of Nonlinear Analysis, Birkhäuser, Basel, 2013.
- P. Stehlík, J. V., Variational methods and implicit discrete Nagumo equation, Journal of Mathematical Analysis and Applications 438(2016), 643-656.

Thank you.