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The Discrete Boundary Value Problem
The Problem

LetNeZy, [1,N]:={1,....N},1 < g < p< +oo, A €]0, +00.

—Apu(z = 1) = Aqu(z = 1) + a(2)dp(u(2)) + B(2)de(u(2)) = Ag(2, u(2)),
forallz € [1, N],
u(0)=u(N+1)=0,

@ Au(z—-1)=u(z) — u(z— 1) is the forward difference
operator,

@ Apu(z—1) = A¢pp(Au(z—-1))) =
dp(Au(2)) — ¢pp(Au(z — 1)) is the discrete p-Laplacian,

® ¢p: R — Risgiven as ¢p(u) = |ulP~2u with u € R,

@ o,f:[1,N+1] =R,

@ g:[1,N+ 1] x R — Ris a continuous function with
g(IN+1,t)=0forall t € R.
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The Discrete Boundary Value Problem
The Problem

LetNeZ,,[1,N]:={1,...,N},; 1 < g < p<+oo, A €]0, +o0].

—Apu(z = 1) = Aqu(z = 1) + a(2)dp(u(2)) + B(2)de(u(2)) = Ag(2, u(2)),
forallz e [1,N],
u(Q)=u(N+1)=0.

We consider the following hypotheses:

(h1) 9(z,0) >0 forall z € [1,N], and g(z, t) = g(z,0) for all
t<0andforall ze [1,N];

(h2) a(2),B(z) > 0forall z € [1, N].
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The Discrete Boundary Value Problem

The features

@ One can obtain existence results under more general
assumptions (on the nonlinearity) than those required for
continuous differential problems;

@ the settings enable us to work with practical (discrete)
cases, arising in numerical analysis as discretized versions
of continuous operators;

@ numerical simulations play a key-role in evaluating
theoretical results, to suggest or disprove theoretical
assumptions (i.e., suitable directions of research);

@ one does not need the Ambrosetti-Rabinowitz condition
(360 >p, 50 >0 : s9g(z,8) > 0G(z,s) > 0for |s| > sp);

@ more general assumptions than the sublinearity at zero
and the superlinearity at infinity can be used.
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The Discrete Boundary Value Problem
Mathematical background

By X and X* we mean a Banach space and its topological dual,
respectively. We consider the N-dimensional Banach space

Xg={u:[0,N+1] - R suchthat u(0)=u(N+1)=0},

and define the norm

N-+1
[ullrp = (Z [[Au(z —1)|" + h(2) !U(Z)Ir}> :

z=1
with h: [0, N+ 1] — [0, +oo[ and r €]1, 4o0].
We have (see [6]) the inequality
(N+1)7F
2
where ||u]|o := Max,ep a [U(2)] is the usual sup-norm.

[Ulloo < ullrn forallue Xy, (1)
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The Discrete Boundary Value Problem
Mathematical background

Proposition 1
Leth = Z’ZV:1 h(z). The following inequalities hold

2 1
———lUlloe < ullrn < (2"N+ )7 |ufloo-

N +1
Proof. The left inequality follows by (1). Since
N-+1
lulfn =" lau(z = 1)+ h(2)|u(2)|]
z=1

N N
< 2|ullle + Y 2l + llulll > h(2)
z=2 z=1

=[2"(N=1)+2+hljjull’ < [2"N + h][|ull%,

we deduce easily the right inequality.
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The Discrete Boundary Value Problem
Mathematical background
Let Xy be endowed with the norm

lull = lullp.o +lullq,s:

where o and 3 are the coefficients of ¢, and ¢4 in (Py).
We consider the function G: [1,N + 1] x R — R given as

t
G(z,t):/ 9(z,6)de, forallt € R, z ¢ [1,N +1],
0

and the functional B : Xy — R given as

N+1
B(u) =Y G(z,u(z)), forallue Xy
z=1

It is clear that B € C'(Xy,R) and

N-+1
(B'(u),v) = i 9(z,u(2))v(z), forallu,ve Xy.
z=1
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The Discrete Boundary Value Problem
Mathematical background
Consider the functionals Ay, As : Xy — R given as

.1

1
Ai(u) = EHuHﬁa and Aqx(u) = EHUHZ’B’ for all u € Xjy.

Obviously, Ay, A> € C'(Xy,R) and we have the Gateaux
derivatives at u € Xj:

N+-1

(Al (u),v) = Z dp(Au(z —1))Av(z — 1) + a(2)pp(u(2))v(2),
z=1
N-+1

(Ap(u),v) = ) dq(Bu(z = 1))Av(z — 1) + B(2)dq(u(2))V(2),

z=1

forall u,v € Xy.
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The Discrete Boundary Value Problem
Mathematical background

For r €]1, +o00[, we have

N+1

3" ér(Au(z — 1))Av(z 1)
N
= _[or(Au(z = 1)v(2) — r(Au(z — 1))v(z —1)]
N "
=3 s(buz - V() - Y ér(Bu(2)v(2)
z=1 z=1
N+1

=— > Ag(Au(z—1)v(2).
z=1
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The Discrete Boundary Value Problem
Mathematical background

So,
N-+1
(Ay(u), v) = Y [~Adp(Au(z — 1)) + a(2)p(u(2))]vV(2),
Zil
(Ax(u Z[ Apq(Au(z — 1)) + B(2)pq(u(2))]v(2),

forall u,v € Xy.
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Existence results for discrete (p, q)-Laplacian equations



The Discrete Boundary Value Problem
Mathematical background
Let /) : Xy — R be the functional defined by
I(u) = A1(u) + Ax(u) — AB(u), forallue Xj.

Clearly 1,(0) = 0. Also, we get

N+1
(A(U),v) = Y [~Agp(Au(z — 1)) = Agg(Au(z — 1))
z=1
+a(2)dp(u(2)) + B(2)¢q(u(2)) — Ag(z, u(2))]v(2),

forall u,v € Xy.

u € Xy is a solution of (Py) iff u is a critical point of /.
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The Discrete Boundary Value Problem
Mathematical background

Asin
[§ G. D’Agui, J. Mawhin, A. Sciammetta, Positive solutions for

a discrete two point nonlinear boundary value problem with
p-Laplacian, J. Math. Anal. Appl., 447 (2017), 383-397.

our key-theorem is a two positive critical points result of

[§ G. Bonanno, G. D’Agui, Two non-zero solutions for elliptic
Dirichlet problems, Z. Anal. Anwend., 35 (2016), 449-464.

which we arrange according to our notation and further use.
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The Discrete Boundary Value Problem
Mathematical background

Theorem 1

Let Xy ={u:[0,N+ 1] — R such that u(0) = u(N + 1) = 0}
and Ay, Az, B € C'(Xy4, R) three functionals such that
infuexd(A1 (U) T+ Ag(U)) = A (0) T+ AQ(O) = B(O) = 0. Assume
that
(i) there are s € R and u € Xy, with0 < A;(U) + Ax(U) < s,
such that

BU) _ SUPue(i+An) (oo B(Y).
A4 (ﬂ) aF Ag(a) S '
(i) - -
Then I, admits two non-zero critical points Uy 1, Uy 2 € Xy such
that I\(uy1) < 0 < I\(ux2), forall A € A.
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The Discrete Boundary Value Problem
Mathematical background

Theorem 2

Let Xy ={u:[0,N+ 1] — R such that u(0) = u(N + 1) = 0}
and Ay, Az, B € C'(Xy, R) three functionals such that
infuex, (A1 (u) + Az(u)) = A¢(0) + Ax(0) = B(0) = 0. Assume
that
(i) -
(i) the functional I, : X4 — R given as
Ih(u) = Aq(u) + A2(u) — AB(u) for all u € Xy satisfies the
(PS)-condition and it is unbounded from below for all
NeR e ] Ar(@)+A2() s

B(u) ’ sup ) B(u) |-

u€(Ag+Az)~1(1—o0,8]
Then |, admits two non-zero critical pclints Uy 1, U2 € Xg SUCh
that I)\(U/\71) <0< I)\(U>\72), for all X € A.
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The Discrete Boundary Value Problem
Mathematical background

We recall the Palais-Smale condition.

Definition 3

Let X be a real Banach space and X* its topological dual.
Then, I, : X — R satisfies the Palais-Smale condition if any
sequence {up} such that

(i) {/\(un)} is bounded;
(i) tim [/ (un)llx- =0,

has a convergent subsequence.
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The Discrete Boundary Value Problem
Mathematical background

We characterize the functional /) as follows.

Lemma 4

G(z 1)

Let My (2) := liminfi_ 4 and My, := Minycy Ny Moo (2). If
Ms > 0, and (hy)-(h2) hold true then | satisfies the
(PS)-condition and it is unbounded from below for all

AeA _]w +oof, where o = SN . a(z) and

/3 2221 /8( )

Proof. As m. > 0, let \ > (2‘”’2;)# and m € R such that
Moo > M > (2‘7”2#. We consider a sequence {u,} C Xy

such that /\(un) = c € Rand /i (us) — 0in X3, as n — +o0.
Let uf = max{un,0} and u;, = max{—up,,0} forall n € N.
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The Discrete Boundary Value Problem
Mathematical background
We show that the sequence {uj, } is bounded. We get
|Au; (z— 1P < |Au, (z = 1)[P2Au, (z—1)Au, (z— 1)
< —|Aup(z — V) |P2Aup(z — 1)Au, (z - 1)
= —¢p(Aup(z —1))Au, (z - 1),
forall z € [1, N + 1]. Moreover,

o(2)|uy (2P = —a(2)|un(2) P2 un(2)uy (2) = —al(2)ép(un(2)) Uy (2),
forall z € [1, N+ 1]. So,

N-+1
U 5.0 = D [1AU; (2 = )P + (2)|up (2)1°]
z=1
N+1
< =) [p(BUn(z = 1))AU, (2 = 1) + a(2)dp(un(2)) Uy (2)]
z=1

= — (A1 (Un), Uy )
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The Discrete Boundary Value Problem
Mathematical background

Analogously, we get ||u, ||q6 —(A5(up), uy ). On the other
hand, one has

N+1
(B'(Un), Up) Zg(z un(2))up (2) >0 (by (hy)).

So,

lun B0 < l1Uq lIp.a + llun g 5
—(A4(Un), tp ) — (Aa(Un), Uy ) + X(B'(Un), uy ) = = (K (Un), Uy ),

for all n € N, which leads to [|u; |5 — 0 as n — +oo.

Similarly, we deduce that Hu,7||g%1 — 0as n— +o0, and so

lluy || — 0 as n — +oo. We deduce that there is p > 0 such that

p+ pN
2

lupll<p = Uplle < :=~, forallneN.
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The Discrete Boundary Value Problem
Mathematical background
We assume that {u,} is unbounded, which means that {u} } is

unbounded. We may suppose that ||up|| — +00 as n — +oc.
By the assumption on m.., we deduce that

there is 6, > max{v, 1} such that G(z, t) > mtP for all t > §,.
Forall z € [1,N], as G(z, -) is a continuous function, there is
C(z) > 0 such that G(z,t) > m|t|° — C(z) for all t € [—~, d;].
= G(z,t) > m|t|P — C(z) forall t > —v, all z € [1, N].

It follows

N+1
B(up) = ZGZ Un(z >Zm|un —C=mlunl - C,

forall n € N, where C = Z’ZV:1 C(2).
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The Discrete Boundary Value Problem

Mathematical background

For all u, such that ||up|| > 1, we get

1 1
I\(Un) = A1(un) + Az(un) — AB(un) = BHUn”g,a + a”uan_ﬂ — AB(un)

P q
< (2 N+a+2 N+
p q
- {(2/"—1—2‘7)N+a+b’
N q

for all n € N. So, since &+2IN+ta+8 _ \m < 0, we get
q

) lunll2, — AmfunllP, + AC

_ )\m] lunllP. + AC,

I\(un) - —oo as n— +oo (||up|| = +00 = ||Un||cc — +00).
This is absurd and so {u,} is bounded. So, /, satisfies the
(PS)-condition.

Again reasoning on a sequence {up} C Xy such that {u, } is
bounded and ||up|| — +o0 as n — 400, we deduce that
I\(un) - —oo @as n — +oo and so [ is unbounded from below.
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Existence Results
Main results

Let h: [0,N+1] — [0,4oc[ and r €]1, +oo]. If
—A(ér(Au(z —1))) + h(z)pr(u(z)) > 0 and u(z) < 0, then

Au(z
(@) <0 ifAu(z—-1)<0.

{go if Au(z—1) <0;
Indeed, if u(z) < 0then ¢,(u(z)) < 0 and hence
—A(¢r(Au(z—-1))) > 0. So, we have

or(Au(2)) < ¢r(Au(z — 1)), which implies that (2) holds true.
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Existence Results
Main results

Let Cy :={ue Xy:u(z) >0forall z € [1,N]}.
A solution u of the problem (Py) is positive if u € C,..

We establish the following result:

Theorem 5

Let u € Xy be fixed so that one of the following inequalities
holds true for each z € [1, N]:

(@) u(z)>0;

(b) —A(ép(Bu(z — 1)) + o(2)dp(u(2)) > 0;

(0) ~A(¢q(Au(z 1)) + A(2)dg(u(2)) > O.

Then, either u € C,. or u = 0, provided that (h2) holds too.
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Existence Results
Main results

Proof. Letu e Xy \ {0} and J={z € [1,N] : u(z) <0}. If
J =10, then u e C,. By absurd, we assume that J # 0. If

minJ = 1, then from (2) we deduce that Au(1) < 0, which
implies u(2) < 0. By iterating this argument, we get easily

0=u(N+1)<u(N)<---<u@) <u(1)<0,

which leads to contradiction (i.e., u = 0). On the other hand, if
mind =j € [2,N], then Au(j — 1) = u(j) — u(j — 1) < 0 (note
that u(j — 1) > 0). By (2), we obtain

Au(j) <0 = u@+1)<u@)<o.
By iterating this argument, we get easily
UN+1)<u(N)<---<u(j+1)<u(j) <0,

which leads to contradiction (i.e., u(N 4+ 1) < 0). Then, J =
and hence u € C;..
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Existence Results
Main results

Let £ = max{0,¢} and denote by g, : [1, N+ 1] x R — R the
function given as g, (z,¢) = g(z,¢7) forall z € [1,N], all ¢ € R.

If the function g : [1, N + 1] x R — R is such that g(z,0) > 0 for
all z € [1, N], then g satisfies the condition (hy).

Now, consider the function G* : [1, N + 1] x R — R given as
t

GH(z,1) :/ 94(2,€)de, forallt € R, z € [1,N+1],
0

and the functional B* : Xy — R defined by

N+1
Bt (u)=>_ G"(z,u(z)), forallue Xy.
z=1
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Existence Results
Main results

It is clear that BT € C'(Xy,R). Also, the functional I : Xy — R
given as

I (u) = A(u) + Ax(u) — ABF(u), forallue Xy,

has as critical points the solutions of the following problem (P)
—Apu(z —1) — Aqu(z — 1) + a(2)pp(u(2))

+8(2)pq(u(z)) = Ag+(z,u(z)), forall z € [1,N],
u(0)=u(N+1)=0.
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Existence Results
Main results

It is immediate to check that Lemma 4 holds true for the
functional )", if we assume that g(z,0) > 0 for all z € [1,N]. In
fact, this ensures that (hy) holds for g, (by Remark 1).

The proof of the following proposition is an immediate
consequence of Theorem 5.

Proposition 2

If the function g : [1,N + 1] x R — R is such that g(z,0) > 0 for
all z € [1, N], then each non-zero critical point of Ij is a positive
solution of (Py), provided that (h2) holds true.
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Existence Results
Main results

Proof. We note that each positive solution u € Xy of (P]) is a
positive solution of (Py), since g, (z,u(z)) = g(z, u(z)) for all

z € [1, N]. So, we prove that the non-zero solutions of (P}) are
positive. If u € Xy \ {0} is a solution of (P) then, for all

z € [1, N] such that u(z) < 0, we have

— Bpu(z —1) = Aqu(z — 1) + (2)dp(u(2)) + B(2)Pq(u(2))
= \g(z,ut(2)) = A\g(z,0) > 0.

This ensures that either (b) or (c¢) holds for each z € [1, N]
such that u(z) < 0. So, by an application of Theorem 5, we
conclude that u € C,.. It follows that the non-zero solutions of
(P) are positive and hence are positive solutions of (Py).
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Main results

Theorem 6

Letg:[1,N+ 1] x R — R be a continuous function such that
9(z,0) >0 forallze [1,N] andg(N +1,t) =0 forall t € R.
Assume that (h.) holds true, and there exist c, d €]0, +oo[ with
¢ > d such that the following inequality is satisfied:

N+1

—p
c 22:1: omex G(z.€) @)
PUER S Gz 9) qmeo
i s .
p dPp=1(2+ a) +d9g=1(2+B) (2P +29)N+  + 8

Then the problem (Py) has at least two positive solutions, for
each X € N\* with

. _ dPp—'(2+a)+d9q— " 2+8) (2P+29)N+a+h p~ 1 (N+1)! =PcP
A* = | max N ’ qm ) SN 0
>0 a(z.d) il o0y mxo<e<c 628
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Main results

Proof. We show that there are s € R and U € Xy, with
0 < A{(U) + Ax(U) < s, such that

B*(u) o SUPye(A+A45)~1(]—00,8]) B*(u)

A1(U) + A (U) s
cP |
have

1

B||U||§ ||UHqg <

LT
= —|Ullp,a S S,

p” b,
= |ullp.a < (ps)?,

N+1)% N+1D%

= e < D a0 < D (p)s <6 oy ().
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Main results

Since G*(z,t) < G™(z,0) = G(z,0) forallt <0 and z € [1, N],
we have

N-+1 N-+1

) =>_ G'(z,u(2)) Z max G(z,¢),
z=1

0<g<c

for all u € Xy with u € (Ay + A2)~1(] — o0, g]), and hence

SUPye (A, +45)~" (|—o0,s]) BT (U) < p(N41)P- SV maxo<e<c G(2,€)
(4)

Next, let U € Xy be given as u(z) = d for all z € [1, N]. We have
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Main results

(2-+0)d  (2+B)d?

Aq1(U) + Ax(u) =

P q
= d’p'(2+a) +d% (2 + ),
Bt(u) Yo G(z,d)

A1(U) + Ax(U)  dPp1(2+ )+ d9g (2 + B)
p—1 le\lj maxo<¢<c G(Z,€)

> p(N+1) s ,
B*(0) SUPue(Ay-+Ag) 1 (1—o0.s) BT (U)
= > ’ by (4)).
A1(0) + Ax(0) 5 ey ()
We observe that 0 < d < ¢ implies that
N+1 N+1
>_G(z.d)< ) max G(z.¢).
z=1 z=1
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So, by (3), we obtain

Yo}
P 9q-1 c
0<dPp'(2+a)+d9g '(2+P) < PN 1T
Also, we have
U)+A(T) = dPp~! g1 L
0 < Aj(U)+Az(u) = dPp™ ' (2+a)+d9g™ ' (2+5) < PN+ 1) S.

By an application of Theorem 2, since the functional /;" satisfies
Lemma 4, we conclude that the problem (P) has at least two
non-zero solutions, for each A € A*. Finally, Proposition 2
implies that the two solutions are positive and hence they are
positive solutions of the problem (Py).
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Main results

Now, we assume that g : [1, N+ 1] x R — R is a continuous
function such that g(z,0) > 0 forall ze [1,N],g(IN+1,t) =0
forall t € R, and

- G(z,€) _ - G(z,6)
|I2n_>SOlip & = +o0 and gﬂToo &

= 400 (5)

for all z € [1, N]. Note that the second limit in (5) ensures that
m,, = +oo. On the other hand, the first limit in (5) ensures that

max G(z,§) >0 forallze [1,N], allc> 0.
0<é<c

So, we put

A= 1 sup ¢ >0
P(N +1)P=1 oo S0 maxoee<e G(2,6)

C. Vetro Existence results for discrete (p, q)-Laplacian equations



Existence Results
Main results

It follows that for all A < )\ there exists ¢ > 0 such that

1 cP

A< >0
p(N + 1)p-1 ZN+1 maxo<¢<c G(2,§)

By the first limit in (5), we obtain that there is d €]0, c[ such that

ZN+1 G(Z d) - 1
dPp~1(2+a) +d9971(2 + B)

Consequently

P Z 1 ZN-H G(Z, d)
0<é<c = p(N+1)P T dPpT(2+a) + d9g (2 + )
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Auxiliary results

Corollary 7

Letg:[1,N+ 1] x R — R be a continuous function such that
9(z,0)>0forallze [1,N]andg(N +1,t) =0 forall t € R.
Also, assume that a(z),5(z) > 0 forall z € [1, N], and

G(Z,f) G(z>§) —

lim su = 4o0 and lim = +o0,
5—>o+p &P Etoo  EP

for all z € [1, N]. Then the problem (Py) has at least two
positive solutions, for each A €]0, A[.

C. Vetro Existence results for discrete (p, q)-Laplacian equations



Existence Results

Auxiliary results

In the case c, d €]0, 1], we have the following result:

Corollary 8

Letg:[1,N+ 1] x R — R be a continuous function with
g(N+1,t) =0 forallt € R. Assume also that (hy)-(h2) hold
true, and there exist c,d €]0, 1] with ¢ > d be such that the
following inequality is satisfied:

N+1 N+1G ) .
{zm (z.d) m } ©

c 9 max G(z, €) < 29(N + 1)' =% min ,
;oggsc (2,8) < 2N +1) (4+atp)dd (2P 12N +atp

Then the problem (Py4) has at least two positive solutions, for
each A e N with

K*—]max{4+a+6 a9 (2P+2L7)N+a+5} 29— V(N +1)1=9c9 [
a Y6z ad)’ qmoo T maxo< e < Gz, €)
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The next result is a particular case of Theorem 6. That is, we
deal with the problem:

~Dpu(z —1) — Dqu(z — 1) + a(2)dp(u(2))
(Pdw) +6(2)pg(u(2)) = \w(2)f(u(2)),forall z € [1, N],
ul0)=u(N+1)=0,

where w : [1, N+ 1] — [0, +-o00[ with w(N + 1) = 0 and
f:R —[0,+o0].
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Let W =30, w(z) and F(t) = [y f(€)d¢ for all t € R.
Corollary 9

Letf: R — [0, +oo[ be a continuous function. Assume that (hy)
holds true, and that there exist c, d €]0, +oo[ with ¢ > d such
that the following inequality is satisfied:

1-p
cPFOW < (N+1) min Fla)w , g Moo )
p aPp=1(2+ a)+d9g=1(2+B) (2P +29)N+a+ B

Then the problem (Py4) has at least two positive solutions, for
each A € \* with

A* — max dPp= 2+ a)+d9q 12+ 8) (P+2ON+a+B) p (N+1)17PcP
- |m F(d)W ’ Moo F(c)W '
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Proof. Consider the function g : [1, N+ 1] x R — R given as
9(z,¢) =w(2)f(§), forallze[1,N+1],aleR,

so that

Then, all the assumptions of Theorem 6 hold true and so we
conclude that the problem (Pgy ) has at least two positive

solutions, for each A € A",
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THANKS FOR YOUR ATTENTION!!!
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