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The Problem

Let N ∈ Z+, [1,N] := {1, . . . ,N}, 1 < q < p < +∞, λ ∈]0,+∞[.


−∆pu(z − 1)−∆qu(z − 1) + α(z)φp(u(z)) + β(z)φq(u(z)) = λg(z,u(z)),

for all z ∈ [1,N],

u(0) = u(N + 1) = 0,

∆u(z − 1) = u(z)− u(z − 1) is the forward difference
operator,
∆pu(z − 1) := ∆(φp(∆u(z − 1))) =
φp(∆u(z))− φp(∆u(z − 1)) is the discrete p-Laplacian,
φp : R→ R is given as φp(u) = |u|p−2u with u ∈ R,
α, β : [1,N + 1]→ R,
g : [1,N + 1]× R→ R is a continuous function with
g(N + 1, t) = 0 for all t ∈ R.
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The Problem

Let N ∈ Z+, [1,N] := {1, . . . ,N}, 1 < q < p < +∞, λ ∈]0,+∞[.


−∆pu(z − 1)−∆qu(z − 1) + α(z)φp(u(z)) + β(z)φq(u(z)) = λg(z,u(z)),

for all z ∈ [1,N],

u(0) = u(N + 1) = 0.

We consider the following hypotheses:

(h1) g(z,0) ≥ 0 for all z ∈ [1,N], and g(z, t) = g(z,0) for all
t < 0 and for all z ∈ [1,N];

(h2) α(z), β(z) ≥ 0 for all z ∈ [1,N].
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The features

One can obtain existence results under more general
assumptions (on the nonlinearity) than those required for
continuous differential problems;
the settings enable us to work with practical (discrete)
cases, arising in numerical analysis as discretized versions
of continuous operators;
numerical simulations play a key-role in evaluating
theoretical results, to suggest or disprove theoretical
assumptions (i.e., suitable directions of research);
one does not need the Ambrosetti-Rabinowitz condition
(∃ θ > p, s0 > 0 : s g(z, s) ≥ θG(z, s) > 0 for |s| ≥ s0);
more general assumptions than the sublinearity at zero
and the superlinearity at infinity can be used.
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Mathematical background

By X and X ∗ we mean a Banach space and its topological dual,
respectively. We consider the N-dimensional Banach space

Xd = {u : [0,N + 1]→ R such that u(0) = u(N + 1) = 0},

and define the norm

‖u‖r ,h :=

(
N+1∑
z=1

[
|∆u(z − 1)|r + h(z) |u(z)|r

]) 1
r

,

with h : [0,N + 1]→ [0,+∞[ and r ∈]1,+∞[.
We have (see [6]) the inequality

‖u‖∞ ≤
(N + 1)

r−1
r

2
‖u‖r ,h for all u ∈ Xd , (1)

where ‖u‖∞ := maxz∈[1,N] |u(z)| is the usual sup-norm.
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Proposition 1

Let h =
∑N

z=1 h(z). The following inequalities hold

2
N + 1

‖u‖∞ ≤ ‖u‖r ,h ≤ (2r N + h)
1
r ‖u‖∞.

Proof. The left inequality follows by (1). Since

‖u‖rr ,h =
N+1∑
z=1

[|∆u(z − 1)|r + h(z)|u(z)|r ]

≤ 2‖u‖r∞ +
N∑

z=2

2r‖u‖r∞ + ‖u‖r∞
N∑

z=1

h(z)

= [2r (N − 1) + 2 + h]‖u‖r∞ ≤ [2r N + h]‖u‖r∞,

we deduce easily the right inequality.
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Let Xd be endowed with the norm

‖u‖ = ‖u‖p,α + ‖u‖q,β,
where α and β are the coefficients of φp and φq in (Pd ).
We consider the function G : [1,N + 1]× R→ R given as

G(z, t) =

∫ t

0
g(z, ξ)dξ, for all t ∈ R, z ∈ [1,N + 1],

and the functional B : Xd → R given as

B(u) =
N+1∑
z=1

G(z,u(z)), for all u ∈ Xd .

It is clear that B ∈ C1(Xd ,R) and

〈B′(u), v〉 =
N+1∑
z=1

g(z,u(z))v(z), for all u, v ∈ Xd .
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Consider the functionals A1,A2 : Xd → R given as

A1(u) =
1
p
‖u‖pp,α and A2(u) =

1
q
‖u‖qq,β, for all u ∈ Xd .

Obviously, A1,A2 ∈ C1(Xd ,R) and we have the Gâteaux
derivatives at u ∈ Xd :

〈A′1(u), v〉 =
N+1∑
z=1

φp(∆u(z − 1))∆v(z − 1) + α(z)φp(u(z))v(z),

〈A′2(u), v〉 =
N+1∑
z=1

φq(∆u(z − 1))∆v(z − 1) + β(z)φq(u(z))v(z),

for all u, v ∈ Xd .

C. Vetro Existence results for discrete (p, q)-Laplacian equations



The Discrete Boundary Value Problem
Existence Results

Mathematical background

For r ∈]1,+∞[, we have

N+1∑
z=1

φr (∆u(z − 1))∆v(z − 1)

=
N+1∑
z=1

[φr (∆u(z − 1))v(z)− φr (∆u(z − 1))v(z − 1)]

=
N+1∑
z=1

φr (∆u(z − 1))v(z)−
N∑

z=1

φr (∆u(z))v(z)

=−
N+1∑
z=1

∆φr (∆u(z − 1))v(z).

C. Vetro Existence results for discrete (p, q)-Laplacian equations



The Discrete Boundary Value Problem
Existence Results

Mathematical background

So,

〈A′1(u), v〉 =
N+1∑
z=1

[−∆φp(∆u(z − 1)) + α(z)φp(u(z))]v(z),

〈A′2(u), v〉 =
N+1∑
z=1

[−∆φq(∆u(z − 1)) + β(z)φq(u(z))]v(z),

for all u, v ∈ Xd .
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Let Iλ : Xd → R be the functional defined by

Iλ(u) = A1(u) + A2(u)− λB(u), for all u ∈ Xd .

Clearly Iλ(0) = 0. Also, we get

〈I′λ(u), v〉 =
N+1∑
z=1

[−∆φp(∆u(z − 1))−∆φq(∆u(z − 1))

+ α(z)φp(u(z)) + β(z)φq(u(z))− λg(z,u(z))]v(z),

for all u, v ∈ Xd .

u ∈ Xd is a solution of (Pd ) iff u is a critical point of Iλ.
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As in

G. D’Aguì, J. Mawhin, A. Sciammetta, Positive solutions for
a discrete two point nonlinear boundary value problem with
p-Laplacian, J. Math. Anal. Appl., 447 (2017), 383–397.

our key-theorem is a two positive critical points result of

G. Bonanno, G. D’Aguì, Two non-zero solutions for elliptic
Dirichlet problems, Z. Anal. Anwend., 35 (2016), 449–464.

which we arrange according to our notation and further use.
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Theorem 1

Let Xd = {u : [0,N + 1]→ R such that u(0) = u(N + 1) = 0}
and A1,A2,B ∈ C1(Xd ,R) three functionals such that
infu∈Xd (A1(u) + A2(u)) = A1(0) + A2(0) = B(0) = 0. Assume
that

(i) there are s ∈ R and û ∈ Xd , with 0 < A1(û) + A2(û) < s,
such that

B(û)

A1(û) + A2(û)
>

supu∈(A1+A2)−1(]−∞,s]) B(u)

s
;

(ii) · · ·
Then Iλ admits two non-zero critical points uλ,1,uλ,2 ∈ Xd such
that Iλ(uλ,1) < 0 < Iλ(uλ,2), for all λ ∈ Λ.
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Theorem 2

Let Xd = {u : [0,N + 1]→ R such that u(0) = u(N + 1) = 0}
and A1,A2,B ∈ C1(Xd ,R) three functionals such that
infu∈Xd (A1(u) + A2(u)) = A1(0) + A2(0) = B(0) = 0. Assume
that

(i) · · ·
(ii) the functional Iλ : Xd → R given as

Iλ(u) = A1(u) + A2(u)− λB(u) for all u ∈ Xd satisfies the
(PS)-condition and it is unbounded from below for all

λ ∈ Λ :=

]
A1(û)+A2(û)

B(û)
, s

supu∈(A1+A2)−1(]−∞,s])
B(u)

[
.

Then Iλ admits two non-zero critical points uλ,1,uλ,2 ∈ Xd such
that Iλ(uλ,1) < 0 < Iλ(uλ,2), for all λ ∈ Λ.
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We recall the Palais-Smale condition.

Definition 3
Let X be a real Banach space and X ∗ its topological dual.
Then, Iλ : X → R satisfies the Palais-Smale condition if any
sequence {un} such that

(i) {Iλ(un)} is bounded;
(ii) lim

n→+∞
‖I′λ(un)‖X∗ = 0,

has a convergent subsequence.
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We characterize the functional Iλ as follows.

Lemma 4

Let m∞(z) := lim inft→+∞
G(z,t)

tp and m∞ := minz∈[1,N] m∞(z). If
m∞ > 0, and (h1)-(h2) hold true, then Iλ satisfies the
(PS)-condition and it is unbounded from below for all
λ ∈ Λ :=] (2p+2q)N+α+β

q m∞ ,+∞[, where α =
∑N

z=1 α(z) and

β =
∑N

z=1 β(z).

Proof. As m∞ > 0, let λ > (2p+2q)N+α+β
q m∞ and m ∈ R such that

m∞ > m > (2p+2q)N+α+β
qλ . We consider a sequence {un} ⊂ Xd

such that Iλ(un)→ c ∈ R and I′λ(un)→ 0 in X ∗d , as n→ +∞.
Let u+

n = max{un,0} and u−n = max{−un,0} for all n ∈ N.
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We show that the sequence {u−n } is bounded. We get

|∆u−n (z − 1)|p ≤ |∆u−n (z − 1)|p−2∆u−n (z − 1)∆u−n (z − 1)

≤ −|∆un(z − 1)|p−2∆un(z − 1)∆u−n (z − 1)

= −φp(∆un(z − 1))∆u−n (z − 1),

for all z ∈ [1,N + 1]. Moreover,

α(z)|u−n (z)|p = −α(z)|un(z)|p−2un(z)u−n (z) = −α(z)φp(un(z))u−n (z),

for all z ∈ [1,N + 1]. So,

‖u−n ‖
p
p,α =

N+1∑
z=1

[|∆u−n (z − 1)|p + α(z)|u−n (z)|p]

≤ −
N+1∑
z=1

[φp(∆un(z − 1))∆u−n (z − 1) + α(z)φp(un(z))u−n (z)]

= −〈A′1(un),u−n 〉.
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Analogously, we get ‖u−n ‖
q
q,β ≤ −〈A

′
2(un),u−n 〉. On the other

hand, one has

〈B′(un),u−n 〉 =
N+1∑
z=1

g(z,un(z))u−n (z) ≥ 0 (by (h1)).

So,

‖u−n ‖
p
p,α ≤ ‖u−n ‖

p
p,α + ‖u−n ‖

q
q,β

≤ −〈A′1(un),u−n 〉 − 〈A′2(un),u−n 〉+ λ〈B′(un),u−n 〉 = −〈I′λ(un),u−n 〉,

for all n ∈ N, which leads to ‖u−n ‖
p−1
p,α → 0 as n→ +∞.

Similarly, we deduce that ‖u−n ‖
q−1
q,β → 0 as n→ +∞, and so

‖u−n ‖ → 0 as n→ +∞. We deduce that there is ρ > 0 such that

‖u−n ‖ ≤ ρ ⇒ ‖u−n ‖∞ ≤
ρ+ ρN

2
:= γ, for all n ∈ N.
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We assume that {un} is unbounded, which means that {u+
n } is

unbounded. We may suppose that ‖un‖ → +∞ as n→ +∞.
By the assumption on m∞, we deduce that

there is δz ≥ max{γ,1} such that G(z, t) > mtp for all t > δz .

For all z ∈ [1,N], as G(z, ·) is a continuous function, there is

C(z) ≥ 0 such that G(z, t) ≥ m|t |p − C(z) for all t ∈ [−γ, δz ].

⇒ G(z, t) ≥ m|t |p − C(z) for all t ≥ −γ, all z ∈ [1,N].

It follows

B(un) =
N+1∑
z=1

G(z,un(z)) ≥
N∑

z=1

m|un(z)|p − C ≥ m‖un‖p∞ − C,

for all n ∈ N, where C =
∑N

z=1 C(z).
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For all un such that ‖un‖∞ ≥ 1, we get

Iλ(un) = A1(un) + A2(un)− λB(un) =
1
p
‖un‖p

p,α +
1
q
‖un‖q

q,β − λB(un)

≤
(

2pN + α

p
+

2qN + β

q

)
‖un‖p

∞ − λm‖un‖p
∞ + λC

≤
[

(2p + 2q)N + α + β

q
− λm

]
‖un‖p

∞ + λC,

for all n ∈ N. So, since (2p+2q)N+α+β
q − λm < 0, we get

Iλ(un)→ −∞ as n→ +∞ (‖un‖ → +∞⇒ ‖un‖∞ → +∞).

This is absurd and so {un} is bounded. So, Iλ satisfies the
(PS)-condition.
Again reasoning on a sequence {un} ⊂ Xd such that {u−n } is
bounded and ‖un‖ → +∞ as n→ +∞, we deduce that
Iλ(un)→ −∞ as n→ +∞ and so Iλ is unbounded from below.
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Let h : [0,N + 1]→ [0,+∞[ and r ∈]1,+∞[. If
−∆(φr (∆u(z − 1))) + h(z)φr (u(z)) ≥ 0 and u(z) ≤ 0, then

∆u(z)

{
≤ 0 if ∆u(z − 1) ≤ 0;

< 0 if ∆u(z − 1) < 0.
(2)

Indeed, if u(z) ≤ 0 then φr (u(z)) ≤ 0 and hence
−∆(φr (∆u(z − 1))) ≥ 0. So, we have
φr (∆u(z)) ≤ φr (∆u(z − 1)), which implies that (2) holds true.
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Main results

Let C+ := {u ∈ Xd : u(z) > 0 for all z ∈ [1,N]}.

A solution u of the problem (Pd ) is positive if u ∈ C+.

We establish the following result:

Theorem 5

Let u ∈ Xd be fixed so that one of the following inequalities
holds true for each z ∈ [1,N]:
(a) u(z) > 0;
(b) −∆(φp(∆u(z − 1))) + α(z)φp(u(z)) ≥ 0;
(c) −∆(φq(∆u(z − 1))) + β(z)φq(u(z)) ≥ 0.

Then, either u ∈ C+ or u ≡ 0, provided that (h2) holds too.

C. Vetro Existence results for discrete (p, q)-Laplacian equations



The Discrete Boundary Value Problem
Existence Results

Main results

Proof. Let u ∈ Xd \ {0} and J = {z ∈ [1,N] : u(z) ≤ 0}. If
J = ∅, then u ∈ C+. By absurd, we assume that J 6= ∅. If
min J = 1, then from (2) we deduce that ∆u(1) ≤ 0, which
implies u(2) ≤ 0. By iterating this argument, we get easily

0 = u(N + 1) ≤ u(N) ≤ · · · ≤ u(2) ≤ u(1) ≤ 0,

which leads to contradiction (i.e., u ≡ 0). On the other hand, if
min J = j ∈ [2,N], then ∆u(j − 1) = u(j)− u(j − 1) < 0 (note
that u(j − 1) > 0). By (2), we obtain

∆u(j) < 0 ⇒ u(j + 1) < u(j) ≤ 0.

By iterating this argument, we get easily

u(N + 1) < u(N) < · · · < u(j + 1) < u(j) ≤ 0,

which leads to contradiction (i.e., u(N + 1) < 0). Then, J = ∅
and hence u ∈ C+.
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Let ξ+ = max{0, ξ} and denote by g+ : [1,N + 1]× R→ R the
function given as g+(z, ξ) = g(z, ξ+) for all z ∈ [1,N], all ξ ∈ R.

Remark 1

If the function g : [1,N + 1]× R→ R is such that g(z,0) ≥ 0 for
all z ∈ [1,N], then g+ satisfies the condition (h1).

Now, consider the function G+ : [1,N + 1]× R→ R given as

G+(z, t) =

∫ t

0
g+(z, ξ)dξ, for all t ∈ R, z ∈ [1,N + 1],

and the functional B+ : Xd → R defined by

B+(u) =
N+1∑
z=1

G+(z,u(z)), for all u ∈ Xd .
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It is clear that B+ ∈ C1(Xd ,R). Also, the functional I+
λ : Xd → R

given as

I+
λ (u) = A1(u) + A2(u)− λB+(u), for all u ∈ Xd ,

has as critical points the solutions of the following problem (P+
d )


−∆pu(z − 1)−∆qu(z − 1) + α(z)φp(u(z))

+β(z)φq(u(z)) = λg+(z,u(z)), for all z ∈ [1,N],

u(0) = u(N + 1) = 0.
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Remark 2

It is immediate to check that Lemma 4 holds true for the
functional I+

λ , if we assume that g(z,0) ≥ 0 for all z ∈ [1,N]. In
fact, this ensures that (h1) holds for g+ (by Remark 1).

The proof of the following proposition is an immediate
consequence of Theorem 5.

Proposition 2

If the function g : [1,N + 1]× R→ R is such that g(z,0) ≥ 0 for
all z ∈ [1,N], then each non-zero critical point of I+

λ is a positive
solution of (Pd ), provided that (h2) holds true.
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Proof. We note that each positive solution u ∈ Xd of (P+
d ) is a

positive solution of (Pd ), since g+(z,u(z)) = g(z,u(z)) for all
z ∈ [1,N]. So, we prove that the non-zero solutions of (P+

d ) are
positive. If u ∈ Xd \ {0} is a solution of (P+

d ) then, for all
z ∈ [1,N] such that u(z) ≤ 0, we have

−∆pu(z − 1)−∆qu(z − 1) + α(z)φp(u(z)) + β(z)φq(u(z))

= λg(z,u+(z)) = λg(z,0) ≥ 0.

This ensures that either (b) or (c) holds for each z ∈ [1,N]
such that u(z) ≤ 0. So, by an application of Theorem 5, we
conclude that u ∈ C+. It follows that the non-zero solutions of
(P+

d ) are positive and hence are positive solutions of (Pd ).
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Theorem 6

Let g : [1,N + 1]× R→ R be a continuous function such that
g(z,0) ≥ 0 for all z ∈ [1,N] and g(N + 1, t) = 0 for all t ∈ R.
Assume that (h2) holds true, and there exist c,d ∈]0,+∞[ with
c > d such that the following inequality is satisfied:

c−p
N+1∑
z=1

max
0≤ξ≤c

G(z, ξ) (3)

<
(N + 1)1−p

p
min

{ ∑N+1
z=1 G(z, d)

dpp−1(2 + α) + dqq−1(2 + β)
,

q m∞
(2p + 2q )N + α + β

}
.

Then the problem (Pd ) has at least two positive solutions, for
each λ ∈ Λ∗ with
Λ∗ =

]
max

{
dpp−1(2+α)+dq q−1(2+β)∑N+1

z=1 G(z,d)
,

(2p+2q )N+α+β
q m∞

}
,

p−1(N+1)1−pcp∑N+1
z=1 max0≤ξ≤c G(z,ξ)

[
.
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Proof. We show that there are s ∈ R and û ∈ Xd , with
0 < A1(û) + A2(û) < s, such that

B+(û)

A1(û) + A2(û)
>

supu∈(A1+A2)−1(]−∞,s]) B+(u)

s
.

Let s :=
cp

p(N + 1)p−1 . For all u ∈ (A1 + A2)−1(]−∞, s]), we

have
1
p
‖u‖p

p,α +
1
q
‖u‖q

q,β ≤ s,

⇒ 1
p
‖u‖p

p,α ≤ s,

⇒ ‖u‖p,α ≤ (ps)
1
p ,

⇒ ‖u‖∞ ≤
(N + 1)

p−1
p

2
‖u‖p,α ≤

(N + 1)
p−1

p

2
(ps)

1
p < c (by (1)).
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Since G+(z, t) ≤ G+(z,0) = G(z,0) for all t < 0 and z ∈ [1,N],
we have

B+(u) =
N+1∑
z=1

G+(z,u(z)) ≤
N+1∑
z=1

max
0≤ξ≤c

G(z, ξ),

for all u ∈ Xd with u ∈ (A1 + A2)−1(]−∞, s]), and hence

supu∈(A1+A2)−1(]−∞,s]) B+(u)

s
≤ p(N+1)p−1

∑N+1
z=1 max0≤ξ≤c G(z, ξ)

cp .

(4)
Next, let û ∈ Xd be given as û(z) = d for all z ∈ [1,N]. We have
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A1(û) + A2(û) =
(2 + α)dp

p
+

(2 + β)dq

q
= dpp−1(2 + α) + dqq−1(2 + β),

⇒ B+(û)

A1(û) + A2(û)
=

∑N+1
z=1 G(z,d)

dpp−1(2 + α) + dqq−1(2 + β)

> p(N + 1)p−1
∑N+1

z=1 max0≤ξ≤c G(z, ξ)

cp ,

⇒ B+(û)

A1(û) + A2(û)
>

supu∈(A1+A2)−1(]−∞,s]) B+(u)

s
(by (4)).

We observe that 0 < d < c implies that
N+1∑
z=1

G(z,d) ≤
N+1∑
z=1

max
0≤ξ≤c

G(z, ξ).
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So, by (3), we obtain

0 < dpp−1(2 + α) + dqq−1(2 + β) <
cp

p(N + 1)p−1 .

Also, we have

0 < A1(û)+A2(û) = dpp−1(2+α)+dqq−1(2+β) <
cp

p(N + 1)p−1 = s.

By an application of Theorem 2, since the functional I+
λ satisfies

Lemma 4, we conclude that the problem (P+
d ) has at least two

non-zero solutions, for each λ ∈ Λ∗. Finally, Proposition 2
implies that the two solutions are positive and hence they are
positive solutions of the problem (Pd ).
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Now, we assume that g : [1,N + 1]× R→ R is a continuous
function such that g(z,0) ≥ 0 for all z ∈ [1,N], g(N + 1, t) = 0
for all t ∈ R, and

lim sup
ξ→0+

G(z, ξ)

ξp = +∞ and lim
ξ→+∞

G(z, ξ)

ξp = +∞ (5)

for all z ∈ [1,N]. Note that the second limit in (5) ensures that
m∞ = +∞. On the other hand, the first limit in (5) ensures that

max
0≤ξ≤c

G(z, ξ) > 0 for all z ∈ [1,N], all c > 0.

So, we put

λ =
1

p(N + 1)p−1 sup
c>0

cp∑N+1
z=1 max0≤ξ≤c G(z, ξ)

> 0.
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It follows that for all λ < λ there exists c > 0 such that

λ <
1

p(N + 1)p−1
cp∑N+1

z=1 max0≤ξ≤c G(z, ξ)
> 0.

By the first limit in (5), we obtain that there is d ∈]0, c[ such that∑N+1
z=1 G(z,d)

dpp−1(2 + α) + dqq−1(2 + β)
>

1
λ
.

Consequently

c−p
N+1∑
z=1

max
0≤ξ≤c

G(z, ξ) <
1

p(N + 1)p−1

∑N+1
z=1 G(z,d)

dpp−1(2 + α) + dqq−1(2 + β)
.

C. Vetro Existence results for discrete (p, q)-Laplacian equations



The Discrete Boundary Value Problem
Existence Results

Auxiliary results

Corollary 7

Let g : [1,N + 1]× R→ R be a continuous function such that
g(z,0) ≥ 0 for all z ∈ [1,N] and g(N + 1, t) = 0 for all t ∈ R.
Also, assume that α(z), β(z) ≥ 0 for all z ∈ [1,N], and

lim sup
ξ→0+

G(z, ξ)

ξp = +∞ and lim
ξ→+∞

G(z, ξ)

ξp = +∞,

for all z ∈ [1,N]. Then the problem (Pd ) has at least two
positive solutions, for each λ ∈]0, λ[.
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In the case c,d ∈]0,1], we have the following result:

Corollary 8

Let g : [1,N + 1]× R→ R be a continuous function with
g(N + 1, t) = 0 for all t ∈ R. Assume also that (h1)-(h2) hold
true, and there exist c,d ∈]0,1] with c > d be such that the
following inequality is satisfied:

c−q
N+1∑
z=1

max
0≤ξ≤c

G(z, ξ) < 2q (N + 1)1−q min

{ ∑N+1
z=1 G(z, d)

(4 + α + β)dq
,

m∞
(2p + 2q )N + α + β

}
. (6)

Then the problem (Pd ) has at least two positive solutions, for
each λ ∈ Λ

∗ with

Λ
∗

=

]
max

{
4 + α + β

q

dq∑N+1
z=1 G(z, d)

,
(2p + 2q )N + α + β

q m∞

}
,

2qq−1(N + 1)1−qcq∑N+1
z=1 max0≤ξ≤c G(z, ξ)

[
.
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The next result is a particular case of Theorem 6. That is, we
deal with the problem:

(Pd ,ω)


−∆pu(z − 1)−∆qu(z − 1) + α(z)φp(u(z))

+β(z)φq(u(z)) = λω(z)f (u(z)), for all z ∈ [1,N],

u(0) = u(N + 1) = 0,

where ω : [1,N + 1]→ [0,+∞[ with ω(N + 1) = 0 and
f : R→ [0,+∞[.
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Let W =
∑N

z=1 ω(z) and F (t) =
∫ t

0 f (ξ)dξ for all t ∈ R.

Corollary 9

Let f : R→ [0,+∞[ be a continuous function. Assume that (h2)
holds true, and that there exist c,d ∈]0,+∞[ with c > d such
that the following inequality is satisfied:

c−pF (c)W <
(N + 1)1−p

p
min

{
F (d)W

dpp−1(2 + α) + dqq−1(2 + β)
,

q m∞
(2p + 2q )N + α + β

}
.

Then the problem (Pd ) has at least two positive solutions, for
each λ ∈ Λ∗ with

Λ∗ =

]
max

{
dpp−1(2 + α) + dqq−1(2 + β)

F (d)W
,

(2p + 2q )N + α + β

q m∞

}
,

p−1(N + 1)1−pcp

F (c)W

[
.
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Proof. Consider the function g : [1,N + 1]× R→ R given as

g(z, ξ) = ω(z)f (ξ), for all z ∈ [1,N + 1], all ξ ∈ R,

so that
N+1∑
z=1

max
0≤ξ≤c

G(z, ξ) = F (c)W .

Then, all the assumptions of Theorem 6 hold true and so we
conclude that the problem (Pd ,ω) has at least two positive
solutions, for each λ ∈ Λ

∗.
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