Quasilinear elliptic equations with gradient dependence

E. Tornatore

DMI, University of Palermo

September 6, 2017

1

¹joint work with D. Averna and D. Motreanu

E. Tornatore

Nonlinear Dirichlet problem driven the (p, q)-Laplacian operator

$$\begin{cases} -\Delta_p u - \mu \Delta_q u = f(x, u, \nabla u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$
 (P_µ)

- $\Omega \subset \mathbb{R}^N$ is a nonempty bounded open set with the boundary $\partial \Omega$
- μ positive real parameter
- 1 < q < p,
- $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ $\Delta_q u = \operatorname{div}(|\nabla u|^{q-2}\nabla u),$
- $f: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$, is a Carathéodory function
 - $f(\cdot, s, \xi)$ is measurable for all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^N$
 - $f(x, \cdot, \cdot)$ is continuous for a.e. $x \in \Omega$.

The case in which the nonlinear term does not depend on the gradient ∇u

$$\begin{cases} -\Delta_p u - \mu \Delta_q u = f(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

has been studied by using variational methods

- S. Marano S. Mosconi- N. Papageorgiou, Multiple Solutions to (p, q)-Laplacian Problems with Resonant Concave Nonlinearity, Adv. Nonlinear Stud. (2016), 16 (1) 51–65.
- D. Mugnai N. Papageorgiou, Wang's Multiplicity result for superlinea (p, q)-equations without the Ambrosetti-Rabinowitz Condition, Transactions of the American Mathematical Soc. (2015) 366 (9) 4919–4936.

If $\mu = 0$

$$\begin{cases} -\Delta_{p}u = f(x, u, \nabla u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega \end{cases}$$
 (P₀)

F. Faraci - D Motreanu - D. Puglisi, *Positive solutions of quasi-linear* elliptic equations with dependence on the gradient, Calc. Var. 54 (2015) 525–538. when $\mu = 1$ 1

$$\begin{cases} -\Delta_p u - \Delta_q u = f(x, u, \nabla u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

L.F.O. Faria - O.H. Miyagaki - D. Motreanu - M. Tanaka, Existence results for nonlinear elliptic equations with Leray-Lions operator and dependence on the gradient, **96** (2014) 154–166.

Under suitable assumption on f we want to prove

- Existence of solutions by using the theory of pseudomonotone operator
- Asymptotic properties as $\mu \to 0^+$ and $\mu \to +\infty$
- Uniqueness of solutions
- Location of solutions by using the method of sub-solution and super-solution for quasilinear elliptic equations combined with comparison arguments.

We refer to following books for details related to pseudomonotone operator and to the method of subsolution-supersolution.

- S. Carl V. K. Le D. Motreanu, Nonsmooth Variational Problems and Their Inequalities Comparison Principles and Applications, *Springer Monographs in Mathematics*, Springer, New York (2007).
- D. Motreanu V. V. Motreanu N. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, *Springer, New York* (2014).

Definition

Let $A: X \to X^*$. We say that A has S₊-property iff every sequence $\{u_n\} \subset X$ such that $u_n \rightharpoonup u$ in X and $\limsup_{n \to +\infty} \langle Au_n, u_n - u \rangle \leq 0$ implies that $u_n \to u$ in X.

Definition

 $A: X \to X^*$ is called **pseudomonotone** if $u_n \rightharpoonup u$ and $\limsup_{n \to +\infty} \langle Au_n, u_n - u \rangle \leq 0$ imply that $Au_n \rightharpoonup Au$ and $\langle Au_n, u_n \rangle \to \langle Au, u \rangle$.

Consider the negative *p*-Laplacian

$$-\Delta_{p}: W^{1,p}_{0}(\Omega)
ightarrow W^{-1,p'}_{0}(\Omega)$$

is continuous, bounded, pseudomonotone and has the S_+ -property

the first eigenvalue of p-Laplacian operator admits the following variational characterization

$$\lambda_{1p} = \inf_{u \in W_0^{1,p}(\Omega)} \frac{\|\nabla u\|_{L^p(\Omega)}^p}{\|u\|_{L^p(\Omega)}^p}$$

The nonlinearity f safisfies the following conditions

(H1) There exist constants $a_1 \ge 0$, $a_2 \ge 0$, $\alpha \in [0, p^* - 1[, \beta \in [0, \frac{p}{(p^*)'}[$ and a function $\sigma \in L^{\gamma'}(\Omega)$, with $\gamma \in [1, p^*[$, such that

$$|f(x,s,\xi)| \leq \sigma(x) + a_1|s|^lpha + a_2|\xi|^eta$$
 a.e. $x \in \Omega, \ orall (s,\xi) \in \mathbb{R} imes \mathbb{R}^N;$

(H2) there exist constants $d_1 \ge 0$, $d_2 \ge 0$ with $\lambda_{1,\rho}^{-1}d_1 + d_2 < 1$, and a function $\omega \in L^1(\Omega)$ such that

$$f(x,s,\xi)s \leq \omega(x) + d_1|s|^p + d_2|\xi|^p$$
 a.e. $x \in \Omega, \ \forall (s,\xi) \in \mathbb{R} \times \mathbb{R}^N$

$$p' = rac{p}{p-1} \qquad p^* = egin{cases} rac{pN}{N-p} & p < N \ +\infty & p \ge N \end{cases}$$

The functional space associated to problem is the Sobolev space $W_0^{1,p}(\Omega)$ with the norm

$$||u|| := \left(\int_{\Omega} |\nabla u|^{p} dx\right)^{\frac{1}{p}}$$

for all $u \in W_0^{1,p}(\Omega)$.

A (weak) solution of problem (P_{μ}) for $\mu \geq 0$ is any $u \in W_0^{1,p}(\Omega)$ such that

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v \, dx + \mu \int_{\Omega} |\nabla u|^{q-2} \nabla u \nabla v \, dx - \int_{\Omega} f(x, u, \nabla u) v \, dx = 0$$

for all $v \in W^{1,p}_0(\Omega)$

э

The Nemytskii operator associated to f

$$N: W^{1,p}_0(\Omega) o W^{-1,p'}(\Omega)$$

defined by

$$N(u)=f(x,u,\nabla u)$$

is well defined, continuous and bounded.

We consider the operator

$$A: W_0^{1,p}(\Omega) \to W^{-1,p'}(\Omega)$$
$$A(u) = -\Delta_p u - \mu \Delta_q u - N(u), \tag{1}$$

Then

 $u \in W_0^{1,p}(\Omega)$ is a weak solution of problem $(P_\mu) \Longleftrightarrow A(u) = 0$

Theorem

Main theorem on pseudomonotone operator Let X be a real reflexive Banach space, $A : X \to X^*$ be a pseudomonotone, bounded and coercive operator. Then there is a solution of the equation Ax = 0.

Theorem

Assume that conditions (H1) and (H2) hold. Then problem (P_{μ}) , with $\mu \geq 0$, admits at least one weak solution $u_{\mu} \in W_{0}^{1,p}(\Omega)$.

E. Tornatore Quasilinear elliptic equations with gradient dependence

э

. $A: W^{1,p}_0(\Omega) \to W^{-1,p'}(\Omega)$

$$A(u) = -\Delta_{P}u - \mu\Delta_{q}u - N(u),$$

- A: W₀^{1,p}(Ω) → W^{-1,p'}(Ω) is bounded, which means that it maps bounded sets onto bounded sets.
- for every sequence $\{u_n\} \subset W_0^{1,p}(\Omega)$ such that $u_n \rightharpoonup u$ in $W_0^{1,p}(\Omega)$, by using that the operator $-\Delta_p - \mu \Delta_q$ on the space $W_0^{1,p}(\Omega)$ has the S_+ -property, we have $u_n \rightarrow u$.
- A is pseudomonotone
- A is coercive

$$\lim_{\|u\|\to\infty}\frac{\langle Au,u\rangle}{\|u\|}=+\infty.$$

Since $A: W_0^{1,p}(\Omega) \to W^{-1,p'}(\Omega)$ is pseudomonotone, bounded and coercive, we can apply the main theorem on pseudomonotone operators. Therefore there is at least one element $u_{\mu} \in W_0^{1,p}(\Omega)$ such that $Au_{\mu} = 0$, so u_{μ} is a weak solution of problem (P_{μ}) , which completes the proof. \Box

(*) Q

Problem (P_{μ}) possesses a solution $u_{\mu} \in W_0^{1,p}(\Omega)$ for every $\mu > 0$. We establish the following a priori estimate.

Lemma

Assume that conditions (H1) and (H2) hold. Then there exists a constant b > 0 independent of $\mu > 0$ such that

$$\|\nabla u_{\mu}\|_{L^{p}(\Omega)} \leq b, \ \forall \mu > 0.$$
⁽²⁾

where

$$b = \left(\frac{\|\omega\|_{L^{1}(\Omega)}}{1 - d_{1}\lambda_{1p}^{-1} - d_{2}}\right)^{\frac{1}{p}}$$

We consider the limit points (u_{μ}) as $\mu \to 0$ in problem (P_{μ}) .

Theorem

For any sequence $\mu_n \to 0^+$, there exists a relabeled subsequence of solutions (u_{μ_n}) of the corresponding problems (P_{μ_n}) such that $u_{\mu_n} \to u$ in $W_0^{1,p}(\Omega)$, with $u \in W_0^{1,p}(\Omega)$ weak solution of problem (P_0)

$$\begin{cases} -\Delta_p u = f(x, u, \nabla u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

Since u_n is a weak solution of problem (P_{μ_n}) , from Lemma $\{u_n\}$ is bounded in $W_0^{1,p}(\Omega)$. Then there exists a subsequence $\{u_{k_n}\}$ such that $u_{k_n} \rightharpoonup u$. From $(P_{\mu_{k_n}})$ we obtain

$$\lim_{k_n\to+\infty}\langle -\Delta_p u_{k_n}, u_{k_n}-u\rangle=0$$

Since $-\Delta_p$ satisfies the S₊-property, we have $u_{k_n} \rightarrow u$. Letting $k_n \rightarrow +\infty$ in $(\mathsf{P}_{\mu_{k_n}})$ it is easy to see that u is a weak solution of problem (P_0) We consider $\mu \to +\infty$ and the problem

$$\begin{cases} -\frac{1}{\mu}\Delta_{p}u - \Delta_{q}u = \frac{1}{\mu}f(x, u, \nabla u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega \end{cases} \qquad (P_{\frac{1}{\mu}})$$

observe that the solutions of problem (P_{μ}) are solutions of problem $(P_{\frac{1}{\mu}})$.

Theorem

For any sequence $\mu_n \to +\infty$, the sequence of solutions (u_{μ_n}) of the corresponding problems (P_{μ_n}) satisfies $u_{\mu_n} \to 0$ in $W_0^{1,q}(\Omega)$.

Proceeding as in the proof of previous Theorem, we set $u_n := u_{\mu_n}$ and apply Lemma to derive that the sequence (u_n) is bounded in $W_0^{1,p}(\Omega)$, so up to a relabeled subsequence we have $u_n \rightharpoonup u$ in $W_0^{1,p}(\Omega)$ for some $u \in W_0^{1,p}(\Omega)$. We note that u_n satisfies

$$\begin{cases} -\frac{1}{\mu_n}\Delta_p u_n - \Delta_q u_n = \frac{1}{\mu_n}f(x, u_n, \nabla u_n) & \text{in } \Omega, \\ u_n = 0 & \text{on } \partial\Omega. \end{cases}$$
(3)

If we act with $u_n - u$ in (3), we find that

$$\lim_{n\to+\infty}\langle -\Delta_q u_n, u_n-u\rangle=0.$$

The S_+ -property of the operator $-\Delta_q : W_0^{1,q}(\Omega) \to W^{-1,q'}(\Omega)$ guarantees that $u_n \to u$ in $W_0^{1,q}(\Omega)$. Letting $n \to \infty$ in (3) entails $\Delta_q u = 0$, so u = 0. We illustrate this topic by presenting a uniqueness result in the case where p = 2 or q = 2. Our assumption is as follows:

(U1) there exists a constant $b_1 \ge 0$ such that

$$(f(x,s,\xi)-f(x,t,\xi))(s-t)\leq b_1|s-t|^2$$
 a.e. $x\in\Omega,\ orall\xi\in\mathbb{R}^N,\ orall s,t\in\mathbb{R};$

(U2) there exist a function $\tau \in L^{\delta}(\Omega)$, with some $\delta \in [1, p^*[$, and a constant $b_2 \ge 0$ such that the function $f(x, s, \cdot) - \tau(x)$ is linear and

$$|f(x,s,\xi) - \tau(x)| \le b_2 |\xi|$$
 a.e. $x \in \Omega, \ \forall (s,\xi) \in \mathbb{R} imes \mathbb{R}^N.$

Theorem

Assume that conditions (H1), (H2), (U1) and (U2) hold.

(i) If p = 2 > q > 1 and

$$b_1\lambda_{1,2}^{-1}+b_2\lambda_{1,2}^{-rac{1}{2}}<1$$

then the solution of problem (P_{μ}) is unique for every $\mu > 0$.

(ii) If p > q = 2, then the solution of problem (P_{μ}) is unique for every

$$\mu > b_1 \lambda_{1,2}^{-1} + b_2 \lambda_{1,2}^{-\frac{1}{2}}$$

Suppose that $v_{\mu} \in W_0^{1,p}(\Omega)$ is a second solution of (P_{μ}) . Acting with $u_{\mu} - v_{\mu}$ on the equation in (P_{μ}) gives

(i) For p = 2, hypotheses (U1) and (U2), in conjunction with (4) and the monotonicity of $-\Delta_q$, imply

$$\begin{split} \|\nabla(u_{\mu}-v_{\mu})\|_{L^{2}(\Omega)}^{2} &\leq b_{1}\|u_{\mu}-v_{\mu}\|_{L^{2}(\Omega)}^{2} + \int_{\Omega}(f(x,v_{\mu},\nabla(\frac{1}{2}(u_{\mu}-v_{\mu})^{2}) dx) \\ &\leq (b_{1}\lambda_{1,2}^{-1}+\frac{b_{2}}{2})\|\nabla(u_{\mu}-v_{\mu})\|_{L^{2}(\Omega)}^{2}. \end{split}$$

Using that $b_1 \lambda_{1,2}^{-1} + b_2 \lambda_{1,2}^{-\frac{1}{2}} < 1$, the equality $u_{\mu} = v_{\mu}$ follows. (ii) For p > q = 2, arguing as in the case of part (i), we find the estimate

$$\|u\| \nabla (u_{\mu} - v_{\mu})\|_{L^{2}(\Omega)}^{2} \leq (b_{1}\lambda_{1,2}^{-1} + b_{2}\lambda_{1,2}^{-\frac{1}{2}}) \|\nabla (u_{\mu} - v_{\mu})\|_{L^{2}(\Omega)}^{2}.$$

The conclusion that $u_{\mu} = v_{\mu}$ ensues provided that $b_1 \lambda_{1,2}^{-1} + \frac{b_2}{2} < \mu$.

Our main goal is to obtain a solution $u \in W_0^{1,p}(\Omega)$ of problem (P_{μ}) with the location property $\underline{u} \leq u \leq \overline{u}$ a.e. in Ω , where \underline{u} and \overline{u} are subsolution and supersolution of problem (P_{μ}) .

 $\overline{u} \in W^{1,p}(\Omega)$ is a supersolution for problem (P_{μ}) if $\overline{u} \ge 0$ on $\partial \Omega$ and

$$\int_{\Omega} \left(|\nabla \overline{u}|^{p-2} \nabla \overline{u} + \mu |\nabla \overline{u}|^{q-2} \nabla \overline{u} \right) \nabla v \, dx \geq \int_{\Omega} f(x, \overline{u}, \nabla \overline{u}) v \, dx$$

for all $v \in W_0^{1,p}(\Omega)$, $v \ge 0$ a.e. in Ω . $\underline{u} \in W^{1,p}(\Omega)$ is a subsolution for problem (P_μ) if $\underline{u} \le 0$ on $\partial\Omega$ and $\int_{\Omega} \left(|\nabla \underline{u}|^{p-2} \nabla \underline{u} + \mu |\nabla \underline{u}|^{q-2} \nabla \underline{u} \right) \nabla v \, dx \le \int_{\Omega} f(x, \underline{u}, \nabla \underline{u}) v \, dx$

for all $v \in W_0^{1,p}(\Omega)$, $v \ge 0$ a.e. in Ω .

Given a subsolution $\underline{u} \in W^{1,p}(\Omega)$ and a supersolution $\overline{u} \in W^{1,p}(\Omega)$ for problem (P_{μ}) with $\underline{u} \leq \overline{u}$ a.e. in Ω , we assume that $f : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ satisfies the growth condition:

(*H*) There exist a function $\sigma \in L^{\gamma'}(\Omega)$ for $\gamma' = \frac{\gamma}{\gamma-1}$ with $\gamma \in (1, p^*)$ and constants a > 0 and $\beta \in [0, \frac{p}{(p^*)'})$ such that

 $|f(x,s,\xi)| \leq \sigma(x) + a|\xi|^{\beta}$ for a.e. $x \in \Omega$, all $s \in [\underline{u}(x), \overline{u}(x)], \xi \in \mathbb{R}^{N}$.

Theorem

Let \underline{u} and \overline{u} be a subsolution and a supersolution of problem (P_{μ}) , respectively, with $\underline{u} \leq \overline{u}$ a.e. in Ω such that hypothesis (H) is fulfilled. Then problem (P_{μ}) possesses a solution $u \in W_0^{1,p}(\Omega)$ satisfying the location property $\underline{u} \leq u \leq \overline{u}$ a.e. in Ω .

• Consider auxiliary truncated problem depending on a positive parameter λ (for any fixed $\mu \ge 0$)

$$(T_{\lambda,\mu})$$
 $-\Delta_p u - \mu \Delta_q u + \lambda B(u) = N(Tu).$

where T is the truncation operator $T: W_0^{1,p}(\Omega) \to W_0^{1,p}(\Omega)$ defined by

$$Tu(x) = \begin{cases} \overline{u}(x) & \text{if } u(x) > \overline{u}(x) \\ u(x) & \text{if } \underline{u}(x) \le u(x) \le \overline{u}(x) \\ \underline{u}(x) & \text{if } u(x) < \underline{u}(x), \end{cases}$$

which is known to be continuous and bounded. π is the cut-off function $\pi: \Omega \times \mathbb{R} \to \mathbb{R}$ defined by

$$\pi(x,s) = \begin{cases} (s - \overline{u}(x))^{\frac{\beta}{p-\beta}} & \text{if } s > \overline{u}(x) \\ 0 & \text{if } \underline{u}(x) \le s \le \overline{u}(x) \\ -(\underline{u}(x) - s)^{\frac{\beta}{p-\beta}} & \text{if } s < \underline{u}(x). \end{cases}$$

 $B: W^{1,p}_0(\Omega)\to W^{-1,p'}(\Omega)$ is the Nemytskij operator given by $B(u)=\pi(\cdot,u(\cdot))$

• $N: [\underline{u}, \overline{u}] \to W^{-1,p'}(\Omega)$ is the Nemytskij operator determined by the function f in (P_{μ}) , that is

$$N(u)(x) = f(x, u(x), \nabla u(x)),$$

- for λ > 0 sufficiently large, there is a solution u ∈ W^{1,p}₀(Ω) of problem (T_{μ,λ}).
- by using comparison arguments we prove that every solution *u* ∈ W₀^{1,p}(Ω) of problem (*T*_{μ,λ}) <u>*u*</u> ≤ *u* ≤ <u>*u*</u> a.e. in Ω.
- the solution u of the auxiliary truncated problem $(T_{\lambda,\mu})$ satisfies Tu = u and B(u) = 0, so it is a solution of the original problem (P_{μ})

We want to show you a result on the existence of positive solutions to problem (P_{μ}) .

The idea is to construct a subsolution $\underline{u} \in W^{1,p}(\Omega)$ and a supersolution $\overline{u} \in W^{1,p}(\Omega)$ with $0 < \underline{u} \leq \overline{u}$ a.e. in Ω for which previous Theorem can be applied.

we suppose the following assumptions on f

(H3) There exist constants $a_0 > 0$, b > 0, $\delta > 0$ and r > 0, with $r if <math>\mu = 0$ and r < q - 1 if $\mu > 0$, such that

$$\left(\frac{a_0}{b}\right)^{\frac{1}{p-r-1}} < \delta \tag{5}$$

and

 $f(x, s, \xi) \ge a_0 s^r - b s^{p-1} \text{ for a.e. } x \in \Omega, \text{ all } 0 < s < \delta, \xi \in \mathbb{R}^N.$ (6) (H4) There exists a constant $s_0 > \delta$, with $\delta > 0$ in (H3), such that

$$f(x, s_0, 0) \le 0 \quad \text{for a.e. } x \in \Omega. \tag{7}$$

Our result on the existence of positive solutions for problem (P_{μ}) is as follows.

Theorem

Assume (H3), (H4) and that

 $|f(x,s,\xi)| \leq \sigma(x) + a|\xi|^{\beta}$ for a.e. $x \in \Omega$, all $s \in [0,s_0], \xi \in \mathbb{R}^N$,

with a function $\sigma \in L^{\gamma'}(\Omega)$ for $\gamma \in [1, p^*)$ and constants a > 0, $\beta \in [0, \frac{p}{(p^*)'})$, and s_0 in (H4). Then, for every $\mu \ge 0$, problem (P_{μ}) possesses a positive smooth solution u satisfying the a priori estimate $u(x) \le s_0$ for all $x \in \Omega$.

Consider the following auxiliary problem

$$\begin{cases} -\Delta_{p}u - \mu\Delta_{q}u + b|u|^{p-2}u = a_{0}(u^{+})^{r} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
(8)

- We prove that there exists a solution <u>u</u> ∈ C₀¹(Ω) of problem such that <u>u</u> > 0 in Ω.
- We claim that \underline{u} is a subsolution for problem (P_{μ}) .
- **(a)** We have $\underline{u} < \overline{u}$ in Ω.
- The hypothesis (H) is verified by constructed pair (<u>u</u>, <u>u</u>) of subsolution-supersolution for problem (P_μ). Therefore previous theorem ensuring the existence of a solution u ∈ W₀^{1,p}(Ω) for the problem (P_μ), which satisfies the enclosure property <u>u</u> ≤ u ≤ <u>u</u> a.e. in Ω.
- Taking into account that <u>u</u> > 0, we conclude that the solution u is positive.

D. Averna - D. Motreanu - E. Tornatore *Existence and asymptotic* properties for quasilinear elliptic equations with gradient dependence Appl. Math. Lett. **61** (2016) 102–107. doi:10.1016/j.aml.2016.05.009

D. Motreanu - E. Tornatore *Location of solutions for quasilinear* elliptic equations with general gradient dependence, preprint