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Introduction Solitons – Historical Overview

Russell and the Wave of Translation

Figure: John Scott Russell (1808 –
1882)

”<...> the boat suddenly stopped - not so
the mass of water in the channel which it
had put in motion; it accumulated round
the prow of the vessel in a state of vio-
lent agitation, then suddenly leaving it be-
hind, rolled forward with great velocity, as-
suming the form of a large solitary eleva-
tion <...> which continued its course along
the channel apparently without change of
form or diminution of speed. <...> was my
first chance interview with that singular and
beautiful phenomenon which I have called
the Wave of Translation. (1834)”
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Introduction Solitons – Historical Overview

First Mathematical Model: KdV equation

Figure: D. Korteweg (top), G. de
Vries

The first actual mathematical model of solitary
waves (solitons) was discovered by Boussinesq
(1877) and later rediscovered and studied in detail
by Diederik Korteweg and Gustav de Vries.

The KdV equation

∂u

∂t
− ∂3u

∂x3
+ 6u

∂u

∂x
= 0.

It was shown that there exist solutions of the form:

KdV soliton

u(t, x) = − c
2
sech2

(√
c

2
(x− ct− a)

)
.
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Introduction Solitons – Historical Overview

Zabusky and Kruskal: Rediscovery

The works of Russell, Boussinesq, Korteweg and
de Vries fell into obscurity until 1965, when Nor-
man J. Zabusky and Martin Kruskal made con-
nections between the KdV equation and the Fermi-
Pasta-Ulam experiment.

The word ”soliton” was coined and extensive stud-
ies into the nature of soliton (solitary) processes
were launched that are still continuing today. It
has had a broad and far-reaching impact in myr-
iad fields ranging from the purest mathematics to
experimental science.

Figure: N. Zabusky (top), M.
Kruskal
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Introduction Solitons – Historical Overview

Rise to fame: the Schrödinger equation

A particular surge in interest of the analysis of
solitary processes in physics came when Vladimir
Zakharov and Aleksei Shabat demonstrated in
1972 that the nonlinear Schrödinger (NLS) equa-
tion has soliton solutions.

NLS equation

i
∂u

∂x
+
∂2u

∂t2
± 2 |u|2 u = 0.

This discovery had enormous repercussions in
physics, especially in nonlinear optics, Bose-
Einstein condensates, where the NLS equation
plays a very important role.

Figure: V. Zakharov (top), A.
Shabat
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Introduction Applications

Applications of Soliton Theory

Soliton theory has had a great impact on myriad fields of science, including:

Nonlinear optics;

Bose-Einstein condensates;

Hydrodynamics;

Biophysics;

MEMs and NEMs;

Plasmas;

Population dynamics.
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KdV Type Soliton Solutions Physical Properties

Physical Properties of Solitary Solutions

A nonlinear wave is called a soliton if:

It maintains its shape as it propagates at a constant speed;

If it collides with another soliton, it emerges from the collision unaltered,
except for a phase shift.

The definition is not universally accepted – there are a few ways to define solitons in
the physical sense (for example allowing a small loss of energy after collision (”light
bullets”)), however, from a mathematical perspective the definition given above is
almost ubiquitous.
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KdV Type Soliton Solutions Analytic Expression

Solitary solutions – analytic expression

Solitary solution

The m-th order solitary solution reads:

x(t) =

m∑
k=0

αk exp
(
ηk(t− c)

)
m∏
k=1

(
exp

(
η(t− c)

)
− tk

) ,
where η, αk, tk, c ∈ C are fixed parameters.

The shape is based on the KdV soliton, which is a special case of the above
solution (hyperbolic secant):

ϕ (ξ) = − c
2
sech2

(√
c

2
(ξ − ξ0)

)
.
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KdV Type Soliton Solutions Examples

Solitary solutions

(a) Kink solitary solution (b) Bright solitary solution
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KdV Type Soliton Solutions Examples

Solitary solutions

(c) Solitary solution with one singularity (d) Solitary solution with two singularities
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KdV Type Soliton Solutions Coupled Riccati Equations

Coupled Riccati equations (1)

Regula et al (2009) introduced the following system for modeling Hepatitis C virus
(HCV) evolution:

x′t = x (1− x− y)− (1− θ) bxy + qy + s;

y′t = ry (1− x− y) + (1 + θ) bxy − (d+ q)y,

θ, b, q, s, r, d ∈ R.

Simple generalization leads to:

x′t = a0 + a1x+ a2x
2 + a3xy + a4y;

y′t = b0 + b1y + b2y
2 + b3xy + b4x,

aj , bj ∈ R.
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KdV Type Soliton Solutions Coupled Riccati Equations

Coupled Riccati equations (2)

x′t = a0 + a1x+ a2x
2 + a3xy + a4y;

y′t = b0 + b1y + b2y
2 + b3xy + b4x,

aj , bj ∈ R.

Standard diffusive coupling terms a4y, b4x;

Multiplicative coupling terms a3xy, b3xy;

Conditions for existence of soliton solutions – ?

Construction of soliton solutions – ?
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Inverse Balancing Technique Main Idea

Inverse balancing technique

The inverse idea of common ansatz methods;

Insert known solution into DE;

If DE depends linearly on equation parameters, solve for them;

Application of technique is not used to solve the DE, but to obtain
necessary existence conditions for the solitary solutions.
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Inverse Balancing Technique Existence of solitary solutions in a class of PDEs

PDEs with polynomial nonlinearity

Class of PDEs

∂mu

∂tm
+Am−1,0

∂m−1u

∂tm−1
+A0,m−1

∂m−1u

∂zm−1
+· · ·+A10

∂u

∂t
+A01

∂u

∂z
= anu

n+· · ·+a0.

When do the considered PDEs have solitary solutions (of any order l)?

u (t− αz) =

l∑
k=0

αk exp
(
ηk (t− αz)

)
l∏

k=1

(
exp

(
η (t− αz)

)
− tk

) .

T. Telksnys (KUT FMNS) DiffEq & App 2017 Brno September 6th, 2017 14 / 38



Inverse Balancing Technique Existence of solitary solutions in a class of PDEs

Necessary existence conditions (1)

Condition #1: derivative and nonlinear term balance

n = m+ 1.

Condition #2: equation and solution order balance

(m+ 1)l

2
≤ l +m+ 1, l,m ∈ N.
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Inverse Balancing Technique Existence of solitary solutions in a class of PDEs

Necessary existence conditions (2)

Table of necessary existence conditions of solitary solutions to the considered
PDEs. ∃ denotes existence with all parameter values, ∃∗ denotes existence with
additional constraints on parameters, 6 ∃ denotes the nonexistence of solitary
solutions.

PPPPPPPPl
(n,m)

(2, 1) (3, 2) (4, 3) (5, 4) (6, 5) (7, 6) (8, 7)

1 ∃ ∃∗ ∃∗ ∃∗ ∃∗ ∃∗ ∃∗
2 6 ∃ ∃∗ ∃∗ ∃∗ ∃∗ ∃∗ ∃∗
3 6 ∃ ∃∗ ∃∗ ∃∗ ∃∗ 6 ∃ 6 ∃
4 6 ∃ 6 ∃ 6 ∃ 6 ∃ 6 ∃ 6 ∃ 6 ∃
5 6 ∃ 6 ∃ 6 ∃ 6 ∃ 6 ∃ 6 ∃ 6 ∃
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Generalized Differential Operator Technique Operators

Generalized differential operator

The notation Dα :=
∂

∂α
will be used.

Generalized differential operator (GDO)

Dcsu := R (c, s, u)Dc + P (c, s, u)Ds +Q (c, s, u)Du,

where R,P,Q are analytic.

Properties of GDO

Dcsu (f1 + f2) = Dcsuf1 +Dcsuf2;

Dcsu (f1f2) = (Dcsuf1) f2 + f1Dcsuf2.
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Generalized Differential Operator Technique Operators

Multiplicative operator

Suppose a GDO Dcsu is given. The multiplicative operator reads:

G :=

+∞∑
j=0

(t− c)j

j!
Dj
csu.

Main property

Gf (c, s, u) = f (Gc,Gs,Gu) .

Each ODE or ODE system has unique generalized differential and multiplicative
operators.
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Generalized Differential Operator Technique Operator Expression of Solutions

First order ODE system

x′t = P (t, x, y) ; x = x (t; c, s, u) , x (c; c, s, u) = s;

y′t = Q (t, x, y) ; y = y (t; c, s, u) , y (c; c, s, u) = u.

System operators

Dcsu = Dc + P (c, s, u)Ds +Q (c, s, u)Du; G =

+∞∑
j=0

(t− c)j

j!
Dj
csu.

General solution

x(t) =

+∞∑
j=0

(t− c)j

j!

(
Dj
csus

)
= Gs, y(t) =

+∞∑
j=0

(t− c)j

j!

(
Dj
csuu

)
= Gu.
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Nonlinear System Transformation Solution Transformation

Image of solution

Suppose an ODE is given:

x′t = P (x) , x = x (t; c, s) ; x (c; c, s) = s.

Variable substitution

t̂ := exp (ηt) , ĉ := exp (ηc) ; η ∈ R\{0}

Image of solution

x = x(t) = x

(
1

η
lnt̂

)
=: x̂

(
t̂
)
= x̂;

x′t = ηt̂x̂′
t̂
.
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Nonlinear System Transformation Equation/Operator Transformation

Image of ODE

Image of ODE

ηt̂x̂′
t̂
= P (x̂) ;

x̂ = x̂
(
t̂; ĉ, s

)
, x̂ (ĉ; ĉ, s) = s.

Operators of transformed ODE

D̂ĉs := Dĉ +
1

ηĉ
P (s)Ds;

Ĝ :=

+∞∑
j=0

(
t̂− ĉ

)j
j!

D̂
j

ĉs.
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Closed Form Solutions Linear Recurring Sequences

Linear recurring sequences

Let pj := Dj
csus. Solutions can be written in the closed form if the sequence(

pj ; j ∈ Z0

)
(or a sequence constructed from pj in a known way) is linearly

recurring.

dk := det



p0 p1 . . . pk−1
p1 p2 . . . pk
...

...
. . .

...
pk−1 pk . . . p2k−2


 .

Linear recurring sequence(
pj ; j ∈ Z0

)
is an m-th order linear recurring sequence (LRS), if

dm 6= 0, dm+l = 0; l = 1, 2, . . . .

It is denoted as
order

(
pj ; j ∈ Z0

)
= m.
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Closed Form Solutions Linear Recurring Sequences

Canonical expression of LRS

The characteristic equation reads:∣∣∣∣∣∣∣∣∣∣∣∣

p0 p1 . . . pm−1 pm
p1 p2 . . . pm pm+1

...
...

. . .
...

...
pm−1 pm . . . p2m−2 p2m−1
1 ρ . . . ρm−1 ρm

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Characteristic roots: ρ1, . . . , ρm; ρk 6= ρj , k 6= j.

Canonical expression

pj =

m∑
k=1

λkρ
j
k, j = 0, 1, . . . .

Coefficients λk, k = 1, . . . ,m are determined from a system of linear equations.
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Closed Form Solutions Application of LRS: Exponent Sum Solution

Exponent sum solution

Suppose that

order
(
Dj
csus; j ∈ Z0

)
= m;

Dj
csus =

m∑
k=1

λkρ
j
k.

Form of solution

x (t; c, s, u) = Gs =

+∞∑
j=0

(t− c)j

j!

m∑
k=1

λkρ
j
k

=

m∑
k=1

λk exp
(
ρk (t− c)

)
.
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Closed Form Solutions Application of LRS: Soliton Solution

Solitary (soliton) solution (1)

Let

order
(
Dj
csus; j ∈ Z0

)
= +∞, but order

(
1

j!
D̂
j

ĉsus; j ∈ Z0

)
= m.

Then
1

j!
D̂
j

ĉsus =

m∑
k=1

λkρ
j
k.

Theorem

The soliton solution exists, if the following relations hold true:

D̂ĉsuρk = ρ2k, D̂ĉsuλk = λkρk; k = 1, . . . ,m.
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Closed Form Solutions Application of LRS: Soliton Solution

Solitary (soliton) solution (2)

Form of solution

x̂
(
t̂; ĉ, s, u

)
= Ĝs =

+∞∑
j=0

(
t̂− ĉ

)j m∑
k=1

λkρ
j
k =

m∑
k=1

λk

1− ρk
(
t̂− ĉ

) ;

x (t; c, s, u) =

m∑
k=0

αk exp
(
ηk(t− c)

)
m∏
k=1

(
exp

(
η(t− c)

)
− tk

) .
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Closed Form Solutions Application of LRS: General Case

General case

Suppose that f (ξ) =

+∞∑
j=0

qj
j!
ξj ; q0 = 1, qj =

j−1∏
k=0

(a+ bk) 6= 0, j = 1, 2, . . . .

Let order

(
1
qj
D̂
j

ĉsus; j ∈ Z0

)
= m, 1

qj
D̂
j

ĉsus =

m∑
k=1

λkρ
j
k.

Form of solution

ŷ
(
t̂; ĉ, s, u

)
= Ĝs =

+∞∑
j=0

qj
j!

(
t̂− ĉ

)j m∑
k=1

λkρ
j
k =

m∑
k=1

λkf

(
ρk

(
t̂− ĉ

))
;

x (t; c, s, u) =
m∑
k=1

λkf
(
αk − βk exp

(
η(t− c)

))
.
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Solitary Solutions Hepatitis C Evolution Model

Hepatitis C model (Coupled Riccati equations)

x′t = a0 + a1x+ a2x
2 + a3xy + a4y; x(c) = s;

y′t = b0 + b1y + b2y
2 + b3xy + b4x; y(c) = u,

aj , bj ∈ R.

Kink solutions (order = 1);

Bright/dark and singular solutions (order = 2);
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Solitary Solutions Hepatitis C Evolution Model Bright/Dark Solutions

Bright/dark solutions

Analytical expression

x (t) = σ

(
exp

(
η(t− c)

)
− x1

)(
exp

(
η(t− c)

)
− x2

)
(
exp

(
η(t− c)

)
− t1

)(
exp

(
η(t− c)

)
− t2

) ; (1)

y (t) = γ

(
exp

(
η(t− c)

)
− y1

)(
exp

(
η(t− c)

)
− y2

)
(
exp

(
η(t− c)

)
− t1

)(
exp

(
η(t− c)

)
− t2

) . (2)

σ, γ, η are constants;

x1, x2, y1, y2, t1, t2 depend on initial conditions s, u;

Solutions which hold for all initial conditions are constructed.
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Solitary Solutions Hepatitis C Evolution Model Bright/Dark Solutions

Existence conditions

Bright/dark solitary solutions exist if:

a3 = b2; a2 = b3,

and

9a0a1a2 + 9b0b1b2 − 18a0a2b1 − 18b0b2a1 + 3a1b
2
1 + 3b1a

2
1 − 2a31 − 2b31

− 9a1a4b4 − 9b1b4a4 + 27a0b2b4 + 27b0a2a4 = 0.

In the phase plane, bright/dark solution trajectories are conic sections:

Ax2(t) +By2(t) + Cx(t)y(t) + Ex(t) + Fy(t) = G; A,B,C,E, F,G ∈ R.
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Solitary Solutions Hepatitis C Evolution Model Bright/Dark Solutions

Time evolution of solutions (1)
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Solitary Solutions Hepatitis C Evolution Model Bright/Dark Solutions

Time evolution of solutions (2)
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Solitary Solutions Hepatitis C Evolution Model Bright/Dark Solutions

Phase portrait
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The End

Thank You For Your Attention
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