Integrability of natural Hamiltonian systems in 2D curved spaces

Wojciech Szumiński^(a), Andrzej J. Maciejewski^(b), Maria Przybylska^(a)

(a) Institute of Physics, University of Zielona Góra

(b) Kepler Institute of Astronomy, University of Zielona Góra

Introduction

Let $H: M \to \mathbb{R}$ be a smooth scalar called Hamiltonian, and

$$
\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{q} = \frac{\partial H}{\partial \boldsymbol{p}}, \qquad \frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{p} = -\frac{\partial H}{\partial \boldsymbol{q}}, \tag{1}
$$

the associated equations of motion.

Introducing $\pmb{x}=(\pmb{q},\pmb{p})^{\pmb{T}}$, we can rewite (1) as

$$
\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x} = \nu_H(\mathbf{x}), \quad \nu_H(\mathbf{x}) = \mathbb{I}_n \nabla_{\mathbf{x}} H, \quad \mathbb{I}_n = \begin{pmatrix} 0 & \mathbb{E} \\ -\mathbb{E} & 0 \end{pmatrix}.
$$
 (2)

■ Question: How to find all solutions?

$$
\mathbf{x}(t) = \varphi(t, \mathbf{x}_0), \qquad \mathbf{x}(0) = \mathbf{x}_0.
$$

First integrals help

$$
\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x} = \nu_H(\mathbf{x}), \quad \nu_H(\mathbf{x}) = \mathbf{I}_{2n} \nabla_{\mathbf{x}} H,\tag{3}
$$

Definition

A non-constant function $F(\mathbf{x}): M \to \mathbb{R}$ is called a first integral of (3) if $F(\mathbf{x}(t)) = \text{const}$ for all solutions $\mathbf{x}(t)$.

$$
\frac{\mathrm{d}}{\mathrm{d}t}F(\mathbf{x}) = \left(\frac{\partial F}{\partial \mathbf{x}}\right)^T \mathbf{v}_H(\mathbf{x}) = \{F, H\}(\mathbf{x}) = 0.
$$

Theorem (Liouville)

If the Hamiltonian system with n− d.o.f. has n functionally independent first integrals which commute, i.e., $\{F_i,F_j\}=0$, for every i, $j=1,\ldots$, n, then the equations of motion are integrable by qudrature.

Question: How to hunt for first integrals?

A particular solution and variational equations help!

Let $H: \mathbb{C}^{2n} \to \mathbb{C}$ be a holomorphic Hamiltonian, and

$$
\frac{\mathrm{d}}{\mathrm{d}t} = \nu_H(\mathbf{x}), \quad \nu_H(\mathbf{x}) = \mathbf{I}_{2n} \nabla_{\mathbf{x}} H, \qquad \mathbf{x} \in \mathbb{C}^{2n}, \quad t \in \mathbb{C}, \tag{4}
$$

the associated Hamilton equations.

- Let $t \to \varphi(t) \in \mathbb{C}^{2n}$ be a non-equilibrium solution of [\(4\)](#page-3-0).
- The maximal analytic continuation of *ϕ*(t) defines a Riemann surface **Γ** with t as a local coordinate.

$$
\Gamma:=\{\mathbf{x}\in\mathbb{C}^{2n}|\mathbf{x}=\boldsymbol{\varphi}(t),\ t\in\mathbf{U}\in\mathbb{C}\}.
$$

■ Variational equations along $\varphi(t)$ have the form

$$
\frac{\mathrm{d}}{\mathrm{d}t}\xi = \mathbf{A}(t) \cdot \xi, \qquad \mathbf{A}(t) = \frac{\partial v_H}{\partial \mathbf{x}}(\boldsymbol{\varphi}(t)). \tag{5}
$$

We can attach to the equation [\(5\)](#page-3-1) the differential Galois group G .

Morales-Ramis theorem

Theorem

Assume that a Hamiltonian system is meromorphically integrable in the Liouville sense in a neighbourhood of the analytic phase curve Γ. Then the identity component of the differential Galois group of the variational equations along Γ is Abelian.

Audin, M., Les systèmes hamiltoniens et leur intégrabilité, Cours Spécialisés 8, Collection SMF, SMF et EDP Sciences, Paris, 2001.

Aplications of Morales–Ramis theory

- \blacksquare to prove non-integrability of Hamiltonian systems,
- A. J. Maciejewski and M. Przybylska, [Non-integrability of](http://www.sciencedirect.com/science/article/pii/S0375960102012598) ABC flow, Phys. Lett. A, 303(4):265–272, 2002.
- T. Stachowiak and W. Szumiński, Non-integrability of constrained double pendula, Phys. Lett. A, doi:10.1016/j.physleta.2015.09.052.
- Maria Przybylska, Wojciech Szumiński, [Non-integrability of flail triple pendulum,](http://www.sciencedirect.com/science/article/pii/S0960077913000805) Chaos, Solitons & Fractals, Vol. 53, August 2013.
- **t** to detection possible integrable cases for Hamiltonian systems depending on parameters.
- A. J. Maciejewski, M. Przybylska and H. Yoshida, [Necessary conditions for the](http://iopscience.iop.org/article/10.1088/0951-7715/25/2/255/meta;jsessionid=496090FD154D1A7482C269FCC0FADA0A.c1) [existence of additional first integrals for Hamiltonian systems with homogeneous](http://iopscience.iop.org/article/10.1088/0951-7715/25/2/255/meta;jsessionid=496090FD154D1A7482C269FCC0FADA0A.c1) [potential,](http://iopscience.iop.org/article/10.1088/0951-7715/25/2/255/meta;jsessionid=496090FD154D1A7482C269FCC0FADA0A.c1) Nonlinearity, Vol. 25, no 2, s. 255–277, 2012.
- W. Szumiński, A. J. Maciejewski and M. Przybylska, [Note on integrability of certain](http://www.sciencedirect.com/science/article/pii/S0375960115007574) [homogeneous Hamiltonian systems,](http://www.sciencedirect.com/science/article/pii/S0375960115007574) Phys. Lett. A, Vol. 379, no. 45–46, p. 2970–2976, 2015

Main steps during applications

- Find a particular solution different from equilibrium points,
- calculate VE and NVE.
- check if G^0 is Abelian (most difficult step): we try to transform NVE into the equation with known differential Galois group:
	- Riemann P equation,
	- \blacksquare Lamé equation,
	- an equation of the second order with rational coefficients.
		-

Kovacic, J. [An algorithm for solving second order linear homogeneous](http://www.sciencedirect.com/science/article/pii/S0747717186800104) [differential equations.](http://www.sciencedirect.com/science/article/pii/S0747717186800104) J. Symbolic Comput., 2(1):3–43,

Integrability of homogeneous Hamiltonian equations

Integrability of Hamiltonian systems given by

$$
H=\frac{1}{2}\sum_{i=1}^n p_i^2+V(\boldsymbol{q}),\qquad (\boldsymbol{q},\boldsymbol{p})\in\mathbb{C}^{2n},
$$

V — homogeneous of degree $k \in \mathbb{Z}$

$$
V(\lambda q_1,\ldots,\lambda q_n)=\lambda^k V(q_1,\ldots,q_n)
$$

Definition (standard)

Darboux point $\boldsymbol{d} \in \mathbb{C}^n$ is a non-zero solution of

$$
V'(\boldsymbol{d})=\boldsymbol{d}
$$

Particular solution

$$
\boldsymbol{q}(t) = \varphi(t)\boldsymbol{d}, \ \boldsymbol{p}(t) = \dot{\varphi}(t)\boldsymbol{d} \quad \text{provided} \quad \ddot{\varphi} = -\varphi^{k-1}.
$$

Integrability of homogeneous Hamiltonian equations

On the energy level:

$$
H(\varphi(t)\boldsymbol{d},\dot{\varphi}(t)\boldsymbol{d})=\mathbf{e}\in\mathbb{C}^{\star},
$$

hyperelliptic curve

$$
\dot{\varphi}^2 = \frac{2}{k} \left(\varepsilon - \varphi^k \right), \quad \varepsilon = k e \in \mathbb{C}^*.
$$

The variational equations

$$
\ddot{x} = -\lambda \varphi(t)^{k-2} x,\tag{6}
$$

where λ is an eigenvalue of $\bm{V}''(\bm{d})$.

Morales Ruiz, J. J., [Differential Galois theory and non-integrability of](http://www2.caminos.upm.es/Departamentos/matematicas/morales%20ruiz/libroFSB.pdf) [Hamiltonian systems,](http://www2.caminos.upm.es/Departamentos/matematicas/morales%20ruiz/libroFSB.pdf) volume 179 of Progress in Mathematics, Birkhäuser Verlag, Basel, 1999.

What is analog of homogeneous systems in curved spaces?

No obvious answer

$$
H = \frac{1}{2} \sum_{i=1}^n p_i^2 + V(\boldsymbol{q}), \qquad (\boldsymbol{q}, \boldsymbol{p}) \in \mathbb{C}^{2n},
$$

Our first proposition

$$
H = \frac{1}{2}r^{m-k}\left(p_r^2 + \frac{p_\varphi^2}{r^2}\right) + r^m U(\varphi),
$$

where m and k are integers, and $k \neq 0$.

 \blacktriangleright We obtain obstructions on values of the quantities¹

$$
\lambda = 1 + \frac{U''(\varphi_0)}{kU(\varphi_0)}, \quad \text{where} \quad U'(\varphi_0) = 0. \tag{7}
$$

 1 see Table 1 in W. Szumiński, A. J. Maciejewski, and M. Przybylska. Note on integrability of certain homogeneous Hamiltonian systems. Phys. Lett. A, 379(45-46):2970–2976, 2015

W.Szumiński, A.J. Maciejewski, M.Przybylska | WFiAUZ | DiffEqApp - Brno 2017 10 / 10 / 43

$U(\varphi) = -\cos \varphi$. Superintegrable cases

■ Case 1: $m = 1, k = -5$.

$$
H = \frac{1}{2}r^6 \left(p_r^2 + \frac{p_\varphi^2}{r^2} \right) - r \cos \varphi,
$$

\n
$$
F_1 := r^2 p_\varphi^2 \cos(2\varphi) - r^3 p_r p_\varphi \sin(2\varphi) + r^{-1} \sin \varphi \sin(2\varphi),
$$

\n
$$
F_2 := r^2 p_\varphi^2 \sin(2\varphi) + r^3 p_r p_\varphi \cos(2\varphi) - r^{-1} \sin \varphi \cos(2\varphi).
$$

■ Case 2: $m = -1, k = 1$.

$$
H = \frac{1}{2}r^{-2} \left(p_r^2 + \frac{p_\varphi^2}{r^2} \right) - r^{-1} \cos \varphi,
$$

\n
$$
F_1 := r^{-2} p_\varphi^2 \cos(2\varphi) + r^{-1} p_r p_\varphi \sin(2\varphi) + r \sin \varphi \sin(2\varphi),
$$

\n
$$
F_2 := -r^{-2} p_\varphi^2 \sin(2\varphi) + r^{-1} p_r p_\varphi \cos(2\varphi) + r \sin \varphi \cos(2\varphi).
$$

$U(\varphi) = -\cos \varphi$. Super-integrable cases

Case 3:
$$
m = 1
$$
, $k = 1$.

\n
$$
H = \frac{1}{2} \left(p_r^2 + \frac{p_\varphi^2}{r^2} \right) - r \cos \varphi,
$$

\n
$$
F_1 := r^{-1} p_\varphi^2 \cos \varphi + p_r p_\varphi \sin \varphi + \frac{1}{2} r^2 \sin^2 \varphi,
$$

\n
$$
F_2 := \left(p_r^2 - r^{-2} p_\varphi^2 \right) \cos \varphi \sin \varphi + r^{-1} p_r p_\varphi \cos(2\varphi) - r \sin \varphi.
$$

■ Case 4: $m = -1, k = -5$.

$$
H = \frac{1}{2}r^4 \left(p_r^2 + \frac{p_\varphi^2}{r^2} \right) - r^{-1} \cos \varphi,
$$

\n
$$
F_1 := r p_\varphi^2 \cos \varphi - r^2 p_r p_\varphi \sin \varphi + \frac{1}{2} r^{-2} \sin^2 \varphi,
$$

\n
$$
F_2 := r^4 \left(p_r^2 - r^{-2} p_\varphi^2 \right) \cos \varphi \sin \varphi - r^3 p_r p_\varphi \cos(2\varphi) - r^{-1} \sin \varphi.
$$

Higher order first integrals

$$
m = 3(k+2), \qquad U(\varphi) = \cosh(\sqrt{3}(k+2)\varphi)
$$

$$
H = \frac{1}{2} \left(p_r^2 + \frac{p_\varphi^2}{r^2} \right) r^{2(k+3)} + r^{3(k+2)} \cosh(\sqrt{3}(k+2)\varphi). \tag{8}
$$

Cubic first integral

$$
F = (k+2)p_{\varphi}^3 - \frac{3}{4}r^{3+k}U'(\varphi)p_r + \frac{9}{4}(k+2)r^{k-2}U(\varphi)p_{\varphi}.
$$
 (9)

$$
m = 2k, \qquad U(\varphi) = \cosh((k+2)\varphi)
$$

$$
H = \frac{1}{2} \left(p_r^2 + \frac{p_\varphi^2}{r^2} \right) r^2 + r^{(k+2)} \cosh((k+2)\varphi).
$$
(10)

Quartic first integral

$$
F = r^{2}(k+2)^{2}p_{r}^{2}p_{\varphi}^{2} + 2(k+2)r^{k+2}U'(\varphi)p_{r}p_{\varphi} + r^{2(k+2)}U'(\varphi)^{2}.
$$
 (11)

Another analogue in curved spaces

Our second proposition $H=\frac{1}{2}$ 2 $\sqrt{2}$ $p_r^2 +$ p_{φ}^2 $\mathcal{S}_{\kappa}(r)^2$ \setminus $+\mathcal{S}_\kappa(r)^m U(\varphi),$ (12) where $m \in \mathbb{Z}$ and $U(\varphi)$ is a meromorphic function and $S_{\kappa}(r)$ is defined by $S_{\kappa}(r) :=$ $\sqrt{ }$ \int \overline{a} √ 1 $\frac{1}{\kappa}$ sin($\sqrt{\kappa}r$) for $\kappa > 0$, $r \t\t for \t\t \kappa = 0,$ $\frac{1}{\sqrt{2}}$ $\frac{1}{-\kappa}$ sinh($\sqrt{-\kappa}r$) for $\kappa < 0$. (13)

 \triangleright We obtain obstructions on values of the quantities²

$$
\lambda = 1 + \frac{U''(\varphi_0)}{kU(\varphi_0)}, \quad \text{where} \quad U'(\varphi_0) = 0. \tag{14}
$$

 2 see Table 1 in A. J. Maciejewski, W. Szumiński, and M. Przybylska. Note on integrability of certain homogeneous Hamiltonian systems in 2D constant curvature spaces. Phys. Lett. A, 381(7):725–732, 2017

W.Szumiński, A.J. Maciejewski, M.Przybylska | WFiAUZ | DiffEqApp - Brno 2017 14 / 14 / 43

Integrable cases and super-integrable cases

 $U(\varphi) = \cos^k \varphi$ and *k*-arbitrary

$$
H = \frac{1}{2} \left(p_r^2 + \frac{p_\varphi^2}{\mathcal{S}_\kappa(r)^2} \right) + S_\kappa^m(r) \cos^m \varphi, \tag{15}
$$

Linear first integral

$$
I_{\kappa} = p_r \sin \varphi + p_{\varphi} \cos \varphi \sqrt{\kappa} \cot \sqrt{\kappa} r, \qquad \kappa \neq 0. \tag{16}
$$

Limit

$$
I_0 = \lim_{\kappa \to 0} I_\kappa = p_r \sin \varphi + r^{-1} p_\varphi \cos \varphi, \qquad (17)
$$

gives the first integral for the case $\kappa = 0$.

 $U(\varphi) = \cos \varphi$, $\kappa = 0$ and $k = 1$, then there exists additional independent first integral quadratic in momenta

$$
I_2 = \left(p_r^2 - \frac{p_\varphi^2}{r^2}\right) \cos\varphi \sin\varphi + r^{-1} p_r p_\varphi \cos(2\varphi) - r \sin\varphi. \tag{18}
$$

Thus, in this case the system is maximally super-integrable.

Integrable cases and super-integrable cases

■
$$
U(\varphi) = \cos(2\varphi)
$$
 and $k = 2$.
\n
$$
H = \frac{1}{2} \left(p_r^2 + \frac{p_\varphi^2}{S_\kappa(r)^2} \right) + S_\kappa(r)^2 \cos(2\varphi)
$$
\n(19)

quadratic first integral

$$
I = \left[p_r^2 - \left(p_\varphi \frac{C_{\kappa}(r)}{S_{\kappa}(r)} \right)^2 \right] U(\varphi) + p_r p_\varphi \frac{C_{\kappa}(r)}{S_{\kappa}(r)} U'(\varphi) + 2(c_1^2 + c_2^2) S_{\kappa}(r)^2. \tag{20}
$$

What about an arbitrary form of the metric?

■ First system

$$
H = \frac{1}{2}r^{m-k}\left(p_r^2 + \frac{p_\varphi^2}{r^2}\right) + r^m U(\varphi),
$$

■ Second system

$$
H = \frac{1}{2} \left(p_r^2 + \frac{p_\varphi^2}{\mathcal{S}_{\kappa}(r)^2} \right) + \mathcal{S}_{\kappa}(r)^m U(\varphi),
$$

- When $\kappa=$ 0, then $M^2_-=\mathbb{E}^2_+$ is a Cartesian plane
- When $\kappa > 0$, then $M^2 = \mathbb{S}^2$ is a sphere
- When $\kappa <$ 0, then $M^2 = \mathbb{H}^2$ is a hyperbolic plane.

What about an arbitrary form of the metric?

■ First system

$$
H = \frac{1}{2}r^{m-k}\left(p_r^2 + \frac{p_\varphi^2}{r^2}\right) + r^m U(\varphi),
$$

■ Second system

$$
H = \frac{1}{2} \left(p_r^2 + \frac{p_\varphi^2}{\mathcal{S}_{\kappa}(r)^2} \right) + \mathcal{S}_{\kappa}(r)^m U(\varphi),
$$

- When $\kappa=$ 0, then $M^2_-=\mathbb{E}^2_+$ is a Cartesian plane
- When $\kappa > 0$, then $M^2 = \mathbb{S}^2$ is a sphere
- When $\kappa <$ 0, then $M^2 = \mathbb{H}^2$ is a hyperbolic plane.

Our third proposition

$$
H = \frac{1}{2} \left(a(r) p_r^2 + b(r) p_\varphi^2 \right) + c(r) \cos \varphi + d(r) \sin \varphi, \tag{21}
$$

where $a(r)$, $b(r)$, $c(r)$ and $d(r)$ are meromorphic functions of variable r.

Main integrability theorem. Auxiliary sets

$$
\mathcal{M}_1(\mu) := \left\{ \frac{1}{4} \left(1 + 4p \right) \left(1 + 4p \pm \sqrt{1 + 8\mu} \right) \mid p \in \mathbb{Z} \right\},\tag{22}
$$

$$
\mathcal{M}_2(\mu) := \left\{ \left(p + \frac{1}{2} \right)^2 - \left(\mu + \frac{1}{4} \right)^2 + \mu^2 \mid p \in \mathbb{Z} \right\},
$$
 (23)

$$
\mathcal{M}_3(\mu) := \left\{ \left(p + \frac{1}{3} \right)^2 - \left(\mu + \frac{1}{4} \right)^2 + \mu^2 \mid p \in \mathbb{Z} \right\},
$$
 (24)

$$
\mathcal{M}_4(\mu) := \left\{ \left(\rho + \frac{1}{4} \right)^2 - \left(\mu + \frac{1}{4} \right)^2 + \mu^2 \mid \rho \in \mathbb{Z} \right\},\tag{25}
$$

$$
\mathcal{M}_5(\mu) := \left\{ \left(\rho + \frac{1}{5} \right)^2 - \left(\mu + \frac{1}{4} \right)^2 + \mu^2 \mid \rho \in \mathbb{Z} \right\},\tag{26}
$$
\n
$$
\mathcal{M}_6(\mu) := \left\{ \left(\rho + \frac{2}{5} \right)^2 - \left(\mu + \frac{1}{4} \right)^2 + \mu^2 \mid \rho \in \mathbb{Z} \right\}.\tag{27}
$$

Theorem (Main Theorem)

Assume that $a(r)$, $b(r)$, $c(r)$ and $d(r)$ are meromorphic functions and there exists a point $r_0 \in \mathbb{Z}$ such that

$$
b'(r_0) = c'(r_0) = d'(r_0) = 0, \quad b(r_0) \neq 0, \quad \text{and} \quad c(r_0) \neq -id(r_0). \tag{28}
$$

If the Hamiltonian system defined by the Hamiltonian

$$
H = \frac{1}{2} \left(a(r) p_r^2 + b(r) p_\varphi^2 \right) + c(r) \cos \varphi + d(r) \sin \varphi, \tag{29}
$$

is integrable in the Liouville sense, then the numbers

$$
\mu := \frac{a(r_0)((c(r_0) + id(r_0))b''(r_0) - b(r_0)(c''(r_0) + id''(r_0))}{b(r_0)^2(c(r_0) + id(r_0))},
$$

$$
\lambda := i \frac{a(r_0)(c(r_0)d''(r_0) - d(r_0)c''(r_0))}{b(r_0)(c(r_0)^2 + d(r_0)^2)},
$$
\n(30)

belong to the following table.

Integrability Table

Table: Integrability table. Here $q \in \mathbb{Z}$ and the sets $\mathcal{M}_i(\mu)$ are defined in [\(42\)](#page-18-0)–[\(47\)](#page-18-1).

Outline of the proof. Vector field

 \blacktriangleright The system

$$
\dot{r} = \frac{\partial H}{\partial p_r} = a(r)p_r, \qquad \dot{p}_r = -\frac{\partial H}{\partial r} = -\frac{1}{2}\left(a'(r)p_r^2 + b'(r)p_\varphi^2\right) - c'(r)\cos\varphi - d'(r)\sin\varphi,
$$
\n
$$
\dot{\varphi} = \frac{\partial H}{\partial p_\varphi} = b(r)p_\varphi, \qquad \dot{p}_\varphi = -\frac{\partial H}{\partial \varphi} = c(r)\sin\varphi - d(r)\cos\varphi.
$$
\n(31)

If $b'(r_0) = c'(r_0) = d'(r_0) = 0$, for a certain $r_0 \in \mathbb{C}$, then the system (31) possesses the invariant manifold

$$
\mathcal{N} = \left\{ (r, p_r, \varphi, p_{\varphi}) \in \mathbb{C}^4 \middle| r = r_0, \ p_r = 0 \right\},\tag{32}
$$

and its restriction to N is given by

$$
\dot{r} = \dot{p}_r = 0, \qquad \dot{\varphi} = b(r_0)p_\varphi, \qquad \dot{p}_\varphi = c(r_0)\sin\varphi - d(r_0)\cos\varphi. \tag{33}
$$

$$
\dot{\varphi}^2 = 2b(r_0) \{ E - c(r_0) \cos \varphi - d(r_0) \sin \varphi \}.
$$
 (34)

Outline of the proof. Variational equations

 \blacktriangleright Particular solution

$$
\pmb{\varphi}(t)=(0,0,\varphi(t)\rho_{\varphi}(t)).
$$

 \blacktriangleright The first order variational equations along $\varphi(t)$:

$$
\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{X} = \mathbf{A}(t)\mathbf{X}, \qquad \mathbf{A}(t) = \frac{\partial \mathbf{v}_H(\mathbf{x})}{\partial \mathbf{x}}(\boldsymbol{\varphi}(t)), \tag{35}
$$

where the matrix $A(t)$ has the form

$$
\mathbf{A}(t) = \begin{bmatrix} 0 & a(r_0) & 0 & 0 \\ (\Xi - E) \frac{b''(r_0)}{b(r_0)} - c''(r_0) \cos \varphi - d''(r_0) \sin \varphi & 0 & 0 & 0 \\ 0 & 0 & 0 & b(r_0) \\ 0 & 0 & \Xi & 0 \end{bmatrix}
$$

$$
\Xi := c(r_0) \cos \varphi + d(r_0) \sin \varphi.
$$

 $\bm{X}=[R,P_R,\Phi,P_\Phi]^{\bm{\mathcal{T}}}$ denotes the variations of $\bm{x}=[r,\bm{\mathsf{p}_r},\bm{\mathsf{\varphi}},\bm{\mathsf{p}_\varphi}]^{\bm{\mathcal{T}}}.$

Outline of the proof. Rationalization

 \blacktriangleright The normal part

$$
\begin{pmatrix}\n\dot{R} \\
\dot{P}_R\n\end{pmatrix} = \begin{pmatrix}\n0 & a(r_0) \\
(\Xi - E) \frac{b''(r_0)}{b(r_0)} - c''(r_0)\cos\varphi - d''(r_0)\sin\varphi & 0\n\end{pmatrix} \begin{pmatrix}\nR \\
P_R\n\end{pmatrix}
$$
\n(36)

can be rewritten as a one second-order differential equation

$$
\ddot{R}=a(r_0)\left((c(r_0)\cos\varphi+d(r_0)-E\sin\varphi)\,\frac{b''(r_0)}{b(r_0)}-c''(r_0)\cos\varphi-d''(r_0)\sin\varphi\right)R.
$$

 \blacktriangleright Change of independent variable

$$
t \longrightarrow z := e^{2i\varphi(t)} \left(1 - \frac{2c(r_0)}{c(r_0) + id(r_0)} \right) \tag{37}
$$

on the level $E = 0$, transforms NVE into

$$
\frac{d^2R}{dz^2} + \left(\frac{3}{4z} + \frac{1}{2(z-1)}\right)\frac{dR}{dz} - \left(\frac{\mu}{8z^2} + \frac{\lambda}{4z(z-1)}\right)R = 0,\tag{38}
$$

Outline of the proof. Rationalization

$$
\frac{d^2 R}{dz^2} + \left(\frac{3}{4z} + \frac{1}{2(z-1)}\right) \frac{dR}{dz} - \left(\frac{\mu}{8z^2} + \frac{\lambda}{4z(z-1)}\right) R = 0, \quad (39)
$$

where

$$
\mu := \frac{a(r_0)((c(r_0) + id(r_0))b''(r_0) - b(r_0)(c''(r_0) + id''(r_0))}{b(r_0)^2(c(r_0) + id(r_0))},
$$

$$
\lambda := i \frac{a(r_0)(c(r_0)d''(r_0) - d(r_0)c''(r_0))}{b(r_0)(c(r_0)^2 + d(r_0)^2)},
$$

Outline of the proof. Rationalization

$$
\frac{d^2 R}{dz^2} + \left(\frac{3}{4z} + \frac{1}{2(z-1)}\right) \frac{dR}{dz} - \left(\frac{\mu}{8z^2} + \frac{\lambda}{4z(z-1)}\right) R = 0, \quad (39)
$$

where

$$
\mu := \frac{a(r_0)((c(r_0) + id(r_0))b''(r_0) - b(r_0)(c''(r_0) + id''(r_0))}{b(r_0)^2(c(r_0) + id(r_0))},
$$

$$
\lambda := i \frac{a(r_0)(c(r_0)d''(r_0) - d(r_0)c''(r_0))}{b(r_0)(c(r_0)^2 + d(r_0)^2)},
$$

 \blacktriangleright Form of the Riemman P equation

$$
R'' + \left(\frac{1-\alpha-\alpha'}{z} + \frac{1-\gamma-\gamma'}{z-1}\right)R' + \left(\frac{\alpha\alpha'}{z^2} + \frac{\gamma\gamma'}{(z-1)^2} + \frac{\beta\beta'-\alpha\alpha'-\gamma\gamma'}{z(z-1)}\right)R = 0,
$$

The differences of exponents at singularities $z = 0$, $z = 1$ and $z = \infty$

$$
\rho = \alpha - \alpha' = \frac{\sqrt{\Delta^2 - 16\lambda}}{4}, \qquad \sigma = \gamma - \gamma' = \frac{1}{2}, \qquad \tau = \beta - \beta' = \frac{\Delta}{4}, \qquad (40)
$$

where

$$
\Delta=\sqrt{1+16\lambda+8\mu}.
$$

Solvability of Riemann P equation. Kimura theorem

Theorem (Kimura)

The identity component of the differential Galois group of the Riemann P equation is solvable iff

- A. at least one of the four numbers $\rho + \sigma + \tau$, $-\rho + \sigma + \tau$, $\rho - \sigma + \tau$, $\rho + \sigma - \tau$ is an odd integer, or
- B. the numbers $ρ$ or $-ρ$ and $σ$ or $-σ$ and $τ$ or $-τ$ belong (in an arbitrary order) to some of appropriate fifteen families forming the so-called Schwarz's table fifteen families

where *l*, *s*, $q \in \mathbb{Z}$.

Kimura theorem: Condition A

 \blacktriangleright The case A of the Kimura Theorem is satisfied if and only if one of the numbers

$$
\rho + \sigma + \tau = \frac{1}{4} \left(2 + \Delta + \sqrt{\Delta^2 - 16\lambda} \right),
$$

$$
-\rho + \sigma + \tau = \frac{1}{4} \left(2 + \Delta - \sqrt{\Delta^2 - 16\lambda} \right),
$$

$$
\rho - \sigma + \tau = \frac{1}{4} \left(-2 + \Delta + \sqrt{\Delta^2 - 16\lambda} \right),
$$

$$
\rho + \sigma - \tau = \frac{1}{4} \left(2 - \Delta + \sqrt{\Delta^2 - 16\lambda} \right)
$$

is an odd integer. It is easy to check that if one the above numbers is an odd integer, then $\lambda \in \mathcal{M}_1(\mu)$, where

$$
\mathcal{M}_1(\mu) = \left\{ \frac{1}{4} \left(1 + 4p \right) \left(1 + 4p \pm \sqrt{\Delta^2 - 16\lambda} \right) \mid p \in \mathbb{Z} \right\}
$$

Kimura Theorem: Condition B

In this case the quantities ρ or $-\rho$, σ or $-\sigma$ and τ or $-\tau$ must belong to Schwarz's table. As $\sigma = \frac{1}{2}$ only items 1, 2, 4, 6, 9, or 14 are allowed. Case 1.

- $\pm\rho=1/2+q,$ for a certain $q\in\mathbb{Z},$ then $\mu=2\left(q+\frac{1}{2}\right)^2-\frac{1}{8}.$ In this case τ is arbitrary, and thus λ is arbitrary.
- \blacktriangleright $\pm \tau = 1/2 + p$, for certain $p \in \mathbb{Z}$, then $\lambda \in M_2(\mu)$. In this case ρ is arbitrary, so *µ* is arbitrary.

Case 2. In this case $\pm \rho = 1/3 + q$ and $\pm \tau = 1/3 + p$, for certain $q, p \in \mathbb{Z}$. These conditions imply that $\lambda \in M_3(\mu)$, and

$$
\mu = 2\left(q + \frac{1}{3}\right)^2 - \frac{1}{8}.
$$
\n(41)

Case 4.

- $\pm \rho = 1/3 + q$, and $\pm \tau = 1/4 + p$, for certain $q, p \in \mathbb{Z}$, then $\lambda \in \mathcal{M}_4(\mu)$ and μ is given by (41) .
- $\pm \rho = 1/4 + q$, and $\pm \tau = 1/3 + p$, for certain $q, p \in \mathbb{Z}$, then $\lambda \in M_3(\mu)$ and $\mu = 2q^2 + q$.

Integrability Table

Table: Integrability table. Here $q \in \mathbb{Z}$ and the sets $\mathcal{M}_i(\mu)$ are defined in [\(42\)](#page-18-0)–[\(47\)](#page-18-1).

Main integrability theorem. Auxiliary sets

$$
\mathcal{M}_1(\mu) := \left\{ \frac{1}{4} \left(1 + 4p \right) \left(1 + 4p \pm \sqrt{1 + 8\mu} \right) \mid p \in \mathbb{Z} \right\},\tag{42}
$$

$$
\mathcal{M}_2(\mu) := \left\{ \left(p + \frac{1}{2} \right)^2 - \left(\mu + \frac{1}{4} \right)^2 + \mu^2 \mid p \in \mathbb{Z} \right\},\tag{43}
$$

$$
\mathcal{M}_3(\mu) := \left\{ \left(p + \frac{1}{3} \right)^2 - \left(\mu + \frac{1}{4} \right)^2 + \mu^2 \mid p \in \mathbb{Z} \right\},\tag{44}
$$

$$
\mathcal{M}_4(\mu) := \left\{ \left(\rho + \frac{1}{4} \right)^2 - \left(\mu + \frac{1}{4} \right)^2 + \mu^2 \mid \rho \in \mathbb{Z} \right\},\tag{45}
$$

$$
\mathcal{M}_5(\mu) := \left\{ \left(p + \frac{1}{5} \right)^2 - \left(\mu + \frac{1}{4} \right)^2 + \mu^2 \mid p \in \mathbb{Z} \right\},\tag{46}
$$

$$
\mathcal{M}_6(\mu) := \left\{ \left(p + \frac{2}{5} \right)^2 - \left(\mu + \frac{1}{4} \right)^2 + \mu^2 \mid p \in \mathbb{Z} \right\}.
$$
 (47)

Theorem (Main [T](#page-20-0)heorem)

Assume that $a(r)$, $b(r)$, $c(r)$ and $d(r)$ are meromorphic functions and there exists a point $r_0 \in \mathbb{Z}$ such that

$$
b'(r_0) = c'(r_0) = d'(r_0) = 0, \quad b(r_0) \neq 0, \quad \text{and} \quad c(r_0) \neq -id(r_0). \tag{48}
$$

If the Hamiltonian system defined by the Hamiltonian

$$
H = \frac{1}{2} \left(a(r) p_r^2 + b(r) p_\varphi^2 \right) + c(r) \cos \varphi + d(r) \sin \varphi, \tag{49}
$$

is integrable in the Liouville sense, then the numbers

$$
\mu := \frac{a(r_0)((c(r_0) + id(r_0))b''(r_0) - b(r_0)(c''(r_0) + id''(r_0))}{b(r_0)^2(c(r_0) + id(r_0))},
$$

$$
\lambda := i \frac{a(r_0)(c(r_0)d''(r_0) - d(r_0)c''(r_0))}{b(r_0)(c(r_0)^2 + d(r_0)^2)},
$$
\n(50)

belong to the Table 2.

Application of the Theorem 2. First example

 \blacktriangleright Let us consider the following Hamiltonian function

$$
H = \frac{1}{2} \left\{ p_r^2 + \left(n + \sin^{-2} r \right) p_\varphi^2 \right\} + \sin r \cos \varphi, \tag{51}
$$

with $n \in \mathbb{Z}$.

The functions a, b, c, d are

$$
a(r) = 1
$$
, $b(r) = n + \sin^{-2} r$, $c(r) = \sin r$, $d(r) = 0$. (52)

 \triangleright We take a point $r_0 = \pi/2$, at which the condition [\(48\)](#page-19-0) is fulfilled.

 \blacktriangleright The values of μ and λ at r_0 are given by

$$
\mu = \frac{3+n}{(1+n)^2}, \qquad \lambda = 0. \tag{53}
$$

 \triangleright Possibly integrable cases $n \in \{0, 1, 3, -3, -2, 11\}.$

First example. Integrable cases

1 For $n = 0$, the system (51) possesses linear first integral

$$
F = p_r \sin \varphi + p_\varphi \cot r \cos \varphi. \tag{54}
$$

2 For $n = 1$, the Hamiltonian [\(51\)](#page-33-0) coincide with the famous Kovalevskaya case defined on sphere \mathbb{S}^2 that has the quartic first integral

$$
I = p_{\varphi}^{4} \sin^{-2} r + p_{r}^{2} p_{\varphi}^{2} + 2p_{\varphi}^{2} \sin^{-1} r \cos \varphi + 2p_{r} p_{\varphi} \cos r \sin \varphi + \frac{1}{4} \left(\cos(2\varphi) + 2 \cos(2r) \sin^{2} \varphi \right),
$$
 (55)

3 For $n = 3$, the Hamiltonian (51) corresponds to the Goryachiev–Chaplygin system defined on sphere \mathbb{S}^2 that posses the following first integrals cubic in momenta

$$
I = p_{\varphi}^{3} \cot^{2} r + p_{\varphi} p_{r}^{2} + p_{r} \cos r \sin \varphi + p_{\varphi} \frac{\cos^{2} r}{\sin r} \cos \varphi, \qquad (56)
$$

...and what about the cases $n \in \{-3, -2, 11\}$?

First example. Not integrable cases

Figure: Poincaré section for $n = -3$ on the level $E = 2$. Cross plane $r = \pi/2$, $p_r > 0$

First example. Not integrable cases

Figure: Poincaré section for $n = -2$ on the level $E = 2$. Cross plane $r = \pi/2$, $p_r > 0$

First example. Not integrable cases

Figure: Poincaré section for $n = 11$ on the level $E = 2$. Cross plane $r = \pi/2$, $p_r > 0$

Application of the Theorem 2. Second example

 \blacktriangleright Let us consider the following Hamiltonian function

$$
H = \frac{1}{2} \left\{ p_r^2 + \left(n^2 + k^2 \sin^{-2} r + \frac{n^2}{4} \tan^2 r \right) p_\varphi^2 \right\} + \sin^k r \cos^{\frac{n}{2}} r \cos \varphi, \qquad (57)
$$

where $k, n \in \mathbb{Z}$.

 \blacktriangleright The functions a, b, c, d are

$$
a(r) = 1, \qquad b(r) = n^2 + k^2 \sin^{-2} r + \frac{n^2}{4} \tan^2 r, \qquad c(r) = \sin^k r \cos^{\frac{n}{2}} r, \qquad d(r) = 0.
$$

 \blacktriangleright We take a point $r_0 = \text{arccot}\left(\sqrt{n/(2k)}\right)$, at which $b'(r_0) = c'(r_0) = 0.$

 \blacktriangleright The values of μ and λ at r_0 are given by

$$
\mu = \frac{(2k+n)(k^2+n(n+2)+k(n+4))}{(k^2+kn+n^2)^2}, \qquad \lambda = 0.
$$
 (58)

- \blacktriangleright Possibly integrable cases
	- 1. $n = -4$, and $k \in \{4, 8\}$, 5. $n = 1$, and $k \in \{0, \pm 1, -2\}$, 2. $n = -2$, and $k \in \{0, -2\}$, 6. $n = 2$, and $k \in \{0, \pm 2, \pm 4\}$, 3. $n = -1$, and $k \in \{\pm 1, 2\}$, 7. $n = 4$, and $k \in \{0, 4\}$, 4. $n = 0$, and $k \in \{\pm 1, \pm 2, \pm 4, 8, 24\}$,

Second example. Integrable cases

1 For $n = 0$, $k = -2$ the system [\(57\)](#page-38-0) is separable with the first integral

$$
I = \frac{1}{2}p_{\varphi}^{2} + \cos(2\varphi).
$$
 (59)

2 The values $n = 0$, $k = 1$ correspond to case given in [54.](#page-34-0)

3 For $n = 0$, $k = 2$ the system [\(57\)](#page-38-0) posses a quadratic first integral

$$
I = \left(p_r^2 - 4p_\varphi^2 \cot^2 r\right) \cos(\varphi) - 4p_r p_\varphi \cot r \sin(\varphi) - \cos(2r). \tag{60}
$$

4 For $n = 2, k = 0$ the Hamiltonian [\(57\)](#page-38-0) corresponds to the integrable Goryachiev–Chaplygin system with the first integral given in [\(56\)](#page-34-1). 5 For $n = -1$, $k = 1$ the Hamiltonian [\(57\)](#page-38-0) has a cubic first integral $I=\left(4\sin^{-2}r+\tan^{2}r\right)\rho_{\phi}^{3}+4\rho_{r}^{2}\rho_{\phi}+8\rho_{r}$ √ $\frac{1}{\cos r}\sin\varphi+\frac{2(3+\cos(2r))}{\sqrt{\cos r}\sin r}p_\varphi\cos\varphi.$ Dullin and Matveev³

 $3H.$ R. Dullin and V. S. Matveev. A new integrable system on the sphere. Math. Res. Lett., 11(5-6):715–722, 2004.

W.Szumi´nski, A.J. Maciejewski, M.Przybylska | WFiAUZ | DiffEqApp - Brno 2017 38 / 43

Second example. Not integrable cases

Figure: Poincaré section with $n = 1$, $k = 0$ at the level $E = 3$ on the surface $r = 1$

Second example. Not integrable cases

Figure: Poincaré section with $n = 1$, $k = -1$ at the level $E = 3$ on the surface $r = 1$

Second example. Not integrable cases

Figure: Poincaré section with $n = 0$, $k = 4$ at the level $E = 3$ on the surface $r = 1$

Summary

Conclusions

- Morales–Ramis theory the most effective method
- New integrable as well as super-integrable cases were detected

Questions and open problems

- If the necessary integrability conditions are satisfied but it seems that the system is chaotic, how to proof its non-integrability?
- To apply the Main Theorem to the Hamiltonian

$$
H = \frac{1}{2} \left(a(r) p_r^2 + b(r) p_\varphi^2 \right) + c(r) \cos \varphi + d(r) \sin \varphi, \tag{62}
$$

with a more complex form of functions a, b, c, d , and to find new, still unknown integrable cases.

Summary

Conclusions

- Morales–Ramis theory the most effective method
- New integrable as well as super-integrable cases were detected

Questions and open problems

- If the necessary integrability conditions are satisfied but it seems that the system is chaotic, how to proof its non-integrability?
- To apply the Main Theorem to the Hamiltonian

$$
H = \frac{1}{2} \left(a(r) p_r^2 + b(r) p_\varphi^2 \right) + c(r) \cos \varphi + d(r) \sin \varphi, \tag{62}
$$

with a more complex form of functions a, b, c, d , and to find new, still unknown integrable cases.

THANK YOU FOR YOUR ATTENTION!

References

- 晶 W. Szumiński, A. J. Maciejewski, and M. Przybylska. Note on integrability of certain homogeneous Hamiltonian systems. Phys. Lett. A, 379(45-46):2970–2976, 2015.
- A. J. Maciejewski, W. Szumiński, and M. Przybylska. Note on integrability of certain homogeneous Hamiltonian systems in 2D constant curvature spaces. Phys. Lett. A, 381(7):725–732, 2017.
- J. J. Morales-Ruiz. Differential Galois theory and non-integrability of Hamiltonian systems. Progress in Mathematics, Birkhauser Verlag, Basel, 1999.
- Kimura, T. (1969/1970): On Riemann's equations which are solvable by quadratures, Funkcial. Ekvac. 12, 269–281.
- G. Valent. On a class of integrable systems with a cubic first integral. Comm. in Math. Phys., 299(3):631–649, 2010.
- G. Valent. On a class of integrable systems with a quartic first integral. Regul. Chaotic Dyn., 18(4):394–424, 2013.
- K. P. Hadeler and Selivanova. On the case of Kovalevskaya and new examples of integrable conservative systems on \mathbb{S}^2 . Regul. Chaotic Dyn, 4(3):45–52, 1999.