
Homogeneous potentials in curved spaces

Integrability of natural Hamiltonian systems in 2D curved
spaces
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Homogeneous potentials in curved spaces

Introduction

Let H : M → R be a smooth scalar called Hamiltonian, and

d
dt

q =
∂H

∂p
,

d
dt

p = −∂H

∂q
, (1)

the associated equations of motion.

Introducing x = (q, p)T , we can rewite (1) as

d
dt

x = νH (x), νH (x) = In∇xH, In =

(
0 E
−E 0

)
. (2)

Question: How to find all solutions?

x(t) = ϕ(t, x0), x(0) = x0.
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Homogeneous potentials in curved spaces

First integrals help

d
dt

x = νH (x), νH (x) = I 2n∇xH, (3)

Definition

A non-constant function F (x) : M → R is called a first integral of (3) if
F (x(t)) = const for all solutions x(t).

d
dt

F (x) =
(

∂F

∂x

)T

vH (x) = {F ,H}(x) = 0.

Theorem (Liouville)

If the Hamiltonian system with n− d.o.f. has n functionally independent first
integrals which commute, i.e., {Fi ,Fj} = 0, for every i , j = 1, . . . , n, then the
equations of motion are integrable by qudrature.

Question: How to hunt for first integrals?

W.Szumiński, A.J. Maciejewski, M.Przybylska | WFiAUZ | DiffEqApp - Brno 2017 3 / 43



Homogeneous potentials in curved spaces

A particular solution and variational equations help!

Let H : C2n → C be a holomorphic Hamiltonian, and

d
dt

= νH (x), νH (x) = I 2n∇xH, x ∈ C2n, t ∈ C, (4)

the associated Hamilton equations.

Let t → ϕ(t) ∈ C2n be a non-equilibrium solution of (4).

The maximal analytic continuation of ϕ(t) defines a Riemann surface Γ with
t as a local coordinate.

Γ := {x ∈ C2n|x = ϕ(t), t ∈ U ∈ C}.

Variational equations along ϕ(t) have the form

d
dt

ξ = A(t) · ξ, A(t) =
∂νH

∂x
(ϕ(t)). (5)

We can attach to the equation (5) the differential Galois group G.
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Homogeneous potentials in curved spaces

Morales-Ramis theorem

Theorem

Assume that a Hamiltonian system is meromorphically integrable in the Liouville
sense in a neighbourhood of the analytic phase curve Γ. Then the identity
component of the differential Galois group of the variational equations along Γ
is Abelian.

Morales Ruiz, J. J., Differential Galois theory and non-integrability of
Hamiltonian systems,
Volume 179 of Progress in Mathematics, Birkhäuser Verlag, Basel, 1999.

Audin, M., Les systèmes hamiltoniens et leur intégrabilité,
Cours Spécialisés 8, Collection SMF, SMF et EDP Sciences, Paris, 2001.
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Aplications of Morales–Ramis theory

to prove non-integrability of Hamiltonian systems,

A. J. Maciejewski and M. Przybylska, Non-integrability of ABC flow, Phys. Lett. A,
303(4):265–272, 2002.

T. Stachowiak and W. Szumiński, Non-integrability of constrained double pendula,
Phys. Lett. A, doi:10.1016/j.physleta.2015.09.052.

Maria Przybylska, Wojciech Szumiński, Non-integrability of flail triple pendulum,
Chaos, Solitons & Fractals, Vol. 53, August 2013.

to detection possible integrable cases for Hamiltonian systems depending on
parameters.

A. J. Maciejewski, M. Przybylska and H. Yoshida, Necessary conditions for the
existence of additional first integrals for Hamiltonian systems with homogeneous
potential, Nonlinearity, Vol. 25, no 2, s. 255–277, 2012.

W. Szumiński, A. J. Maciejewski and M. Przybylska, Note on integrability of certain
homogeneous Hamiltonian systems, Phys. Lett. A, Vol. 379, no. 45–46, p.
2970–2976, 2015
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Main steps during applications

Find a particular solution different from equilibrium points,

calculate VE and NVE,

check if G0 is Abelian (most difficult step): we try to transform NVE into the
equation with known differential Galois group:

Riemann P equation,
Lamé equation,
an equation of the second order with rational coefficients.

Kovacic, J. An algorithm for solving second order linear homogeneous
differential equations. J. Symbolic Comput., 2(1):3–43,
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Homogeneous potentials in curved spaces

Integrability of homogeneous Hamiltonian equations

Integrability of Hamiltonian systems given by

H =
1

2

n

∑
i=1

p2
i + V (q), (q, p) ∈ C2n,

V — homogeneous of degree k ∈ Z

V (λq1, . . . , λqn) = λkV (q1, . . . , qn)

Definition (standard)

Darboux point d ∈ Cn is a non-zero solution of

V ′(d ) = d

Particular solution

q(t) = ϕ(t)d , p(t) = ϕ̇(t)d provided ϕ̈ = −ϕk−1.
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Homogeneous potentials in curved spaces

Integrability of homogeneous Hamiltonian equations

On the energy level:
H(ϕ(t)d , ϕ̇(t)d ) = e ∈ C?,

hyperelliptic curve

ϕ̇2 =
2

k

(
ε− ϕk

)
, ε = ke ∈ C∗.

The variational equations
ẍ = −λϕ(t)k−2x , (6)

where λ is an eigenvalue of V ′′(d ).

Morales Ruiz, J. J., Differential Galois theory and non-integrability of
Hamiltonian systems, volume 179 of Progress in Mathematics, Birkhäuser
Verlag, Basel, 1999.
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Homogeneous potentials in curved spaces

What is analog of homogeneous systems in curved spaces?

No obvious answer

H =
1

2

n

∑
i=1

p2
i + V (q), (q, p) ∈ C2n,

Our first proposition

H =
1

2
rm−k

(
p2
r +

p2
ϕ

r2

)
+ rmU(ϕ),

where m and k are integers, and k 6= 0.

I We obtain obstructions on values of the quantities1

λ = 1 +
U ′′(ϕ0)

kU(ϕ0)
, where U ′(ϕ0) = 0. (7)

1see Table 1 in W. Szumiński, A. J. Maciejewski, and M. Przybylska. Note on integrability of
certain homogeneous Hamiltonian systems. Phys. Lett. A, 379(45-46):2970–2976, 2015
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Homogeneous potentials in curved spaces

U(ϕ) = − cos ϕ. Superintegrable cases

Case 1: m = 1, k = −5.

H =
1

2
r6

(
p2
r +

p2
ϕ

r2

)
− r cos ϕ,

F1 := r2p2
ϕ cos(2ϕ)− r3prpϕ sin(2ϕ) + r−1 sin ϕ sin(2ϕ),

F2 := r2p2
ϕ sin(2ϕ) + r3prpϕ cos(2ϕ)− r−1 sin ϕ cos(2ϕ).

Case 2: m = −1, k = 1.

H =
1

2
r−2

(
p2
r +

p2
ϕ

r2

)
− r−1 cos ϕ,

F1 := r−2p2
ϕ cos(2ϕ) + r−1prpϕ sin(2ϕ) + r sin ϕ sin(2ϕ),

F2 := −r−2p2
ϕ sin(2ϕ) + r−1prpϕ cos(2ϕ) + r sin ϕ cos(2ϕ).
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U(ϕ) = − cos ϕ. Super-integrable cases

Case 3: m = 1, k = 1.

H =
1

2

(
p2
r +

p2
ϕ

r2

)
− r cos ϕ,

F1 := r−1p2
ϕ cos ϕ + prpϕ sin ϕ +

1

2
r2 sin2 ϕ,

F2 :=
(
p2
r − r−2p2

ϕ

)
cos ϕ sin ϕ + r−1prpϕ cos(2ϕ)− r sin ϕ.

Case 4: m = −1, k = −5.

H =
1

2
r4

(
p2
r +

p2
ϕ

r2

)
− r−1 cos ϕ,

F1 := rp2
ϕ cos ϕ− r2prpϕ sin ϕ +

1

2
r−2 sin2 ϕ,

F2 := r4
(
p2
r − r−2p2

ϕ

)
cos ϕ sin ϕ− r3prpϕ cos(2ϕ)− r−1 sin ϕ.
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Higher order first integrals

m = 3(k + 2), U(ϕ) = cosh(
√

3(k + 2)ϕ)

H =
1

2

(
p2
r +

p2
ϕ

r2

)
r2(k+3) + r3(k+2) cosh(

√
3(k + 2)ϕ). (8)

Cubic first integral

F = (k + 2)p3
ϕ −

3

4
r3+kU ′(ϕ)pr +

9

4
(k + 2)rk−2U(ϕ)pϕ. (9)

m = 2k, U(ϕ) = cosh((k + 2)ϕ)

H =
1

2

(
p2
r +

p2
ϕ

r2

)
r2 + r (k+2) cosh((k + 2)ϕ). (10)

Quartic first integral

F = r2(k + 2)2p2
r p

2
ϕ + 2(k + 2)rk+2U ′(ϕ)prpϕ + r2(k+2)U ′(ϕ)2. (11)
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Homogeneous potentials in curved spaces

Another analogue in curved spaces

Our second proposition

H =
1

2

(
p2
r +

p2
ϕ

Sκ(r)2

)
+ Sκ(r)

mU(ϕ), (12)

where m ∈ Z and U(ϕ) is a meromorphic function and Sκ(r) is defined by

Sκ(r) :=


1√
κ

sin(
√

κr) for κ > 0,

r for κ = 0,
1√
−κ

sinh(
√
−κr) for κ < 0.

(13)

I We obtain obstructions on values of the quantities2

λ = 1 +
U ′′(ϕ0)

kU(ϕ0)
, where U ′(ϕ0) = 0. (14)

2see Table 1 in A. J. Maciejewski, W. Szumiński, and M. Przybylska. Note on integrability of
certain homogeneous Hamiltonian systems in 2D constant curvature spaces. Phys. Lett. A,
381(7):725–732, 2017
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Homogeneous potentials in curved spaces

Integrable cases and super-integrable cases

U(ϕ) = cosk ϕ and k-arbitrary

H =
1

2

(
p2
r +

p2
ϕ

Sκ(r)2

)
+ Sm

κ (r) cosm ϕ, (15)

Linear first integral

Iκ = pr sin ϕ + pϕ cos ϕ
√

κ cot
√

κr , κ 6= 0. (16)

Limit
I0 = lim

κ→0
Iκ = pr sin ϕ + r−1pϕ cos ϕ, (17)

gives the first integral for the case κ = 0.

U(ϕ) = cos ϕ, κ = 0 and k = 1, then there exists additional independent
first integral quadratic in momenta

I2 =

(
p2
r −

p2
ϕ

r2

)
cos ϕ sin ϕ + r−1prpϕ cos(2ϕ)− r sin ϕ. (18)

Thus, in this case the system is maximally super-integrable.
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Homogeneous potentials in curved spaces

Integrable cases and super-integrable cases

U(ϕ) = cos(2ϕ) and k = 2.

H =
1

2

(
p2
r +

p2
ϕ

Sκ(r)2

)
+ Sκ(r)

2 cos(2ϕ) (19)

quadratic first integral

I =

[
p2
r −

(
pϕ

Cκ(r)

Sκ(r)

)2
]
U(ϕ) + prpϕ

Cκ(r)

Sκ(r)
U ′(ϕ) + 2(c2

1 + c2
2 ) Sκ(r)

2. (20)
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Homogeneous potentials in curved spaces

What about an arbitrary form of the metric?

First system

H =
1

2
rm−k

(
p2
r +

p2
ϕ

r2

)
+ rmU(ϕ),

Second system

H =
1

2

(
p2
r +

p2
ϕ

Sκ(r)2

)
+ Sκ(r)

mU(ϕ),

When κ = 0, then M2 = E2 is a Cartesian plane
When κ > 0, then M2 = S2 is a sphere
When κ < 0, then M2 = H2 is a hyperbolic plane.

Our third proposition

H =
1

2

(
a(r)p2

r + b(r)p2
ϕ

)
+ c(r)cos ϕ + d(r)sin ϕ, (21)

where a(r), b(r), c(r) and d(r) are meromorphic functions of variable r .
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Homogeneous potentials in curved spaces

Main integrability theorem. Auxiliary sets

M1(µ) :=
{

1

4
(1 + 4p)

(
1 + 4p ±

√
1 + 8µ

)
| p ∈ Z

}
, (22)

M2(µ) :=

{(
p +

1

2

)2

−
(

µ +
1

4

)2

+ µ2 | p ∈ Z
}

, (23)

M3(µ) :=

{(
p +

1

3

)2

−
(

µ +
1

4

)2

+ µ2 | p ∈ Z
}

, (24)

M4(µ) :=

{(
p +

1

4

)2

−
(

µ +
1

4

)2

+ µ2 | p ∈ Z
}

, (25)

M5(µ) :=

{(
p +

1

5

)2

−
(

µ +
1

4

)2

+ µ2 | p ∈ Z
}

, (26)

M6(µ) :=

{(
p +

2

5

)2

−
(

µ +
1

4

)2

+ µ2 | p ∈ Z
}

. (27)
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Homogeneous potentials in curved spaces

Theorem (Main Theorem)

Assume that a(r), b(r), c(r) and d(r) are meromorphic functions and there
exists a point r0 ∈ Z such that

b′(r0) = c ′(r0) = d ′(r0) = 0, b(r0) 6= 0, and c(r0) 6= −id(r0). (28)

If the Hamiltonian system defined by the Hamiltonian

H =
1

2

(
a(r)p2

r + b(r)p2
ϕ

)
+ c(r)cos ϕ + d(r)sin ϕ, (29)

is integrable in the Liouville sense, then the numbers

µ :=
a(r0)((c(r0) + id(r0))b′′(r0)− b(r0)(c

′′(r0) + id ′′(r0))
b(r0)2(c(r0) + id(r0))

,

λ :=i
a(r0)(c(r0)d

′′(r0)− d(r0)c
′′(r0))

b(r0)(c(r0)2 + d(r0)2)
,

(30)

belong to the following table.
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Homogeneous potentials in curved spaces

Integrability Table

No. µ λ

1 C M1(µ) ∪M2(µ)

2 2

(
q +

1

2

)2

− 1
8 C

3 2q2 + q M3(µ)

4 2

(
q +

1

3

)2

− 1
8

⋃6
i=3 Mi (µ)

5 2

(
q +

1

5

)2

− 1
8 M3(µ) ∪M6(µ)

6 2

(
q +

2

5

)2

− 1
8 M3(µ) ∪M5(µ)

Table: Integrability table. Here q ∈ Z and the sets Mi (µ) are defined in (42)–(47).
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Outline of the proof. Vector field

I The system

ṙ =
∂H

∂pr
= a(r)pr ,

ϕ̇ =
∂H

∂pϕ
= b(r)pϕ,

ṗr = −
∂H

∂r
= −1

2

(
a′(r)p2

r + b′(r)p2
ϕ

)
− c ′(r)cos ϕ− d ′(r)sin ϕ,

ṗϕ = − ∂H

∂ϕ
= c(r)sin ϕ− d(r)cos ϕ.

(31)

I If b′(r0) = c ′(r0) = d ′(r0) = 0, for a certain r0 ∈ C, then the system (31) possesses
the invariant manifold

N =
{
(r , pr , ϕ, pϕ) ∈ C4

∣∣ r = r0, pr = 0
}

, (32)

and its restriction to N is given by

ṙ = ṗr = 0, ϕ̇ = b(r0)pϕ, ṗϕ = c(r0)sin ϕ− d(r0)cos ϕ. (33)

ϕ̇2 = 2b(r0) {E − c(r0)cos ϕ− d(r0)sin ϕ} . (34)
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Outline of the proof. Variational equations

I Particular solution
ϕ(t) = (0, 0, ϕ(t)pϕ(t)).

I The first order variational equations along ϕ(t):

d
dt

X = A(t)X , A(t) =
∂vH (x)

∂x
(ϕ(t)), (35)

where the matrix A(t) has the form

A(t) =


0 a(r0) 0 0

(Ξ− E )
b′′(r0)
b(r0)

− c ′′(r0)cos ϕ− d ′′(r0)sin ϕ 0 0 0

0 0 0 b(r0)
0 0 Ξ 0


Ξ := c(r0)cos ϕ + d(r0)sin ϕ.

X = [R,PR , Φ,PΦ]
T denotes the variations of x = [r , pr , ϕ, pϕ]T .
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Outline of the proof. Rationalization

I The normal part(
Ṙ
ṖR

)
=

(
0 a(r0)

(Ξ− E )
b′′(r0)
b(r0)

− c ′′(r0)cos ϕ− d ′′(r0)sin ϕ 0

)(
R
PR

)
(36)

can be rewritten as a one second-order differential equation

R̈ = a(r0)

(
(c(r0)cos ϕ + d(r0)− E sin ϕ)

b′′(r0)
b(r0)

− c ′′(r0)cos ϕ− d ′′(r0)sin ϕ

)
R.

I Change of independent variable

t −→ z := e2iϕ(t)
(

1− 2c(r0)

c(r0) + id(r0)

)
(37)

on the level E = 0, transforms NVE into

d2R

dz2
+

(
3

4z
+

1

2(z − 1)

)
dR
dz
−
(

µ

8z2
+

λ

4z(z − 1)

)
R = 0, (38)
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Homogeneous potentials in curved spaces

Outline of the proof. Rationalization

d2R

dz2
+

(
3

4z
+

1

2(z − 1)

)
dR
dz
−
(

µ

8z2
+

λ

4z(z − 1)

)
R = 0, (39)

where

µ : =
a(r0)((c(r0) + id(r0))b′′(r0)− b(r0)(c

′′(r0) + id ′′(r0))
b(r0)2(c(r0) + id(r0))

,

λ : = i
a(r0)(c(r0)d

′′(r0)− d(r0)c
′′(r0))

b(r0)(c(r0)2 + d(r0)2)
,

I Form of the Riemman P equation

R ′′ +

(
1− α− α′

z
+

1− γ− γ′

z − 1

)
R ′ +

(
αα′

z2
+

γγ′

(z − 1)2
+

ββ′ − αα′ − γγ′

z(z − 1)

)
R = 0,

The differences of exponents at singularities z = 0, z = 1 and z = ∞

ρ = α− α′ =

√
∆2 − 16λ

4
, σ = γ− γ′ =

1

2
, τ = β− β′ =

∆
4

, (40)

where
∆ =

√
1 + 16λ + 8µ.
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Outline of the proof. Rationalization

d2R

dz2
+
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3
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1
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λ : = i
a(r0)(c(r0)d

′′(r0)− d(r0)c
′′(r0))

b(r0)(c(r0)2 + d(r0)2)
,

I Form of the Riemman P equation

R ′′ +

(
1− α− α′

z
+

1− γ− γ′

z − 1

)
R ′ +

(
αα′

z2
+

γγ′

(z − 1)2
+

ββ′ − αα′ − γγ′

z(z − 1)

)
R = 0,

The differences of exponents at singularities z = 0, z = 1 and z = ∞

ρ = α− α′ =

√
∆2 − 16λ

4
, σ = γ− γ′ =

1

2
, τ = β− β′ =

∆
4

, (40)

where
∆ =

√
1 + 16λ + 8µ.
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Solvability of Riemann P equation. Kimura theorem

Theorem (Kimura)

The identity component of the differential Galois group of the Riemann P
equation is solvable iff

A. at least one of the four numbers ρ + σ + τ, −ρ + σ + τ,
ρ− σ + τ, ρ + σ− τ is an odd integer, or

B. the numbers ρ or −ρ and σ or −σ and τ or −τ belong (in an
arbitrary order) to some of appropriate fifteen families forming
the so-called Schwarz’s table fifteen families
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1 1/2 + l 1/2 + s arbitrary complex number
2 1/2 + l 1/3 + s 1/3 + q
3 2/3 + l 1/3 + s 1/3 + q l + s + q even
4 1/2 + l 1/3 + s 1/4 + q
5 2/3 + l 1/4 + s 1/4 + q l + s + q even
6 1/2 + l 1/3 + s 1/5 + q
7 2/5 + l 1/3 + s 1/3 + q l + s + q even
8 2/3 + l 1/5 + s 1/5 + q l + s + q even
9 1/2 + l 2/5 + s 1/5 + q

10 3/5 + l 1/3 + s 1/5 + q l + s + q even
11 2/5 + l 2/5 + s 2/5 + q l + s + q even
12 2/3 + l 1/3 + s 1/5 + q l + s + q even
13 4/5 + l 1/5 + s 1/5 + q l + s + q even
14 1/2 + l 2/5 + s 1/3 + q
15 3/5 + l 2/5 + s 1/3 + q l + s + q even

where l , s, q ∈ Z.

W.Szumiński, A.J. Maciejewski, M.Przybylska | WFiAUZ | DiffEqApp - Brno 2017 26 / 43



Homogeneous potentials in curved spaces

Kimura theorem: Condition A

I The case A of the Kimura Theorem is satisfied if and only if one of the numbers

ρ + σ + τ =
1

4

(
2 + ∆ +

√
∆2 − 16λ

)
,

−ρ + σ + τ =
1

4

(
2 + ∆−

√
∆2 − 16λ

)
,

ρ− σ + τ =
1

4

(
−2 + ∆ +

√
∆2 − 16λ

)
,

ρ + σ− τ =
1

4

(
2− ∆ +

√
∆2 − 16λ

)
is an odd integer. It is easy to check that if one the above numbers is an odd integer,
then λ ∈M1(µ), where

M1(µ) =

{
1

4
(1 + 4p)

(
1 + 4p ±

√
∆2 − 16λ

)
| p ∈ Z

}
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Kimura Theorem: Condition B

In this case the quantities ρ or −ρ, σ or −σ and τ or −τ must belong to
Schwarz’s table. As σ = 1

2 only items 1, 2, 4, 6, 9, or 14 are allowed.
Case 1.

±ρ = 1/2 + q, for a certain q ∈ Z, then µ = 2
(
q + 1

2

)2
− 1

8 . In this case τ

is arbitrary, and thus λ is arbitrary.
±τ = 1/2 + p, for certain p ∈ Z, then λ ∈M2(µ). In this case ρ is
arbitrary, so µ is arbitrary.

Case 2. In this case ±ρ = 1/3 + q and ±τ = 1/3 + p, for certain q, p ∈ Z.
These conditions imply that λ ∈M3(µ), and

µ = 2

(
q +

1

3

)2

− 1

8
. (41)

Case 4.
±ρ = 1/3 + q, and ±τ = 1/4 + p, for certain q, p ∈ Z, then λ ∈M4(µ)
and µ is given by (41).
±ρ = 1/4 + q, and ±τ = 1/3 + p, for certain q, p ∈ Z, then λ ∈M3(µ)
and µ = 2q2 + q.
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Integrability Table

No. µ λ

1 C M1(µ) ∪M2(µ)

2 2

(
q +

1

2

)2

− 1
8 C

3 2q2 + q M3(µ)

4 2

(
q +

1

3

)2

− 1
8

⋃6
i=3 Mi (µ)

5 2

(
q +

1

5

)2

− 1
8 M3(µ) ∪M6(µ)

6 2

(
q +

2

5

)2

− 1
8 M3(µ) ∪M5(µ)

Table: Integrability table. Here q ∈ Z and the sets Mi (µ) are defined in (42)–(47).
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Main integrability theorem. Auxiliary sets

M1(µ) :=
{

1

4
(1 + 4p)

(
1 + 4p ±

√
1 + 8µ

)
| p ∈ Z

}
, (42)

M2(µ) :=

{(
p +

1

2

)2

−
(

µ +
1

4

)2

+ µ2 | p ∈ Z
}

, (43)

M3(µ) :=

{(
p +

1

3

)2

−
(

µ +
1

4

)2

+ µ2 | p ∈ Z
}

, (44)

M4(µ) :=

{(
p +

1

4

)2

−
(

µ +
1

4

)2

+ µ2 | p ∈ Z
}

, (45)

M5(µ) :=

{(
p +

1

5

)2

−
(

µ +
1

4

)2

+ µ2 | p ∈ Z
}

, (46)

M6(µ) :=

{(
p +

2

5

)2

−
(

µ +
1

4

)2

+ µ2 | p ∈ Z
}

. (47)
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Theorem (Main Theorem)

Assume that a(r), b(r), c(r) and d(r) are meromorphic functions and there
exists a point r0 ∈ Z such that

b′(r0) = c ′(r0) = d ′(r0) = 0, b(r0) 6= 0, and c(r0) 6= −id(r0). (48)

If the Hamiltonian system defined by the Hamiltonian

H =
1

2

(
a(r)p2

r + b(r)p2
ϕ

)
+ c(r)cos ϕ + d(r)sin ϕ, (49)

is integrable in the Liouville sense, then the numbers

µ :=
a(r0)((c(r0) + id(r0))b′′(r0)− b(r0)(c

′′(r0) + id ′′(r0))
b(r0)2(c(r0) + id(r0))

,

λ :=i
a(r0)(c(r0)d

′′(r0)− d(r0)c
′′(r0))

b(r0)(c(r0)2 + d(r0)2)
,

(50)

belong to the Table 2.
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Application of the Theorem 2. First example

I Let us consider the following Hamiltonian function

H =
1

2

{
p2
r +

(
n+ sin−2 r

)
p2

ϕ

}
+ sin rcos ϕ, (51)

with n ∈ Z.
The functions a, b, c, d are

a(r) = 1, b(r) = n+ sin−2 r , c(r) = sin r , d(r) = 0. (52)

I We take a point r0 = π/2, at which the condition (48) is fulfilled.
I The values of µ and λ at r0 are given by

µ =
3 + n

(1 + n)2
, λ = 0. (53)

I Possibly integrable cases n ∈ {0, 1, 3,−3,−2, 11}.
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First example. Integrable cases

1 For n = 0, the system (51) possesses linear first integral

F = pr sin ϕ + pϕ cot r cos ϕ. (54)

2 For n = 1, the Hamiltonian (51) coincide with the famous Kovalevskaya case
defined on sphere S2 that has the quartic first integral

I =p4
ϕ sin−2 r + p2

r p
2
ϕ + 2p2

ϕ sin−1 r cos ϕ + 2prpϕ cos r sin ϕ

+
1

4

(
cos(2ϕ) + 2 cos(2r) sin2 ϕ

)
,

(55)

3 For n = 3, the Hamiltonian (51) corresponds to the Goryachiev–Chaplygin
system defined on sphere S2 that posses the following first integrals cubic in
momenta

I = p3
ϕ cot2 r + pϕp

2
r + pr cos r sin ϕ + pϕ

cos2 r

sin r
cos ϕ, (56)

...and what about the cases n ∈ {−3,−2, 11}?
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First example. Not integrable cases

Figure: Poincaré section for n = −3 on the level E = 2. Cross plane r = π/2, pr > 0
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First example. Not integrable cases

Figure: Poincaré section for n = −2 on the level E = 2. Cross plane r = π/2, pr > 0
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First example. Not integrable cases

Figure: Poincaré section for n = 11 on the level E = 2. Cross plane r = π/2, pr > 0
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Application of the Theorem 2. Second example

I Let us consider the following Hamiltonian function

H =
1

2

{
p2
r +

(
n2 + k2 sin−2 r +

n2

4
tan2 r

)
p2

ϕ

}
+ sink r cos

n
2 r cos ϕ, (57)

where k, n ∈ Z.
I The functions a, b, c, d are

a(r) = 1, b(r) = n2 + k2 sin−2 r +
n2

4
tan2 r , c(r) = sink r cos

n
2 r , d(r) = 0.

I We take a point r0 = arccot
(√

n/(2k)
)

, at which b′(r0) = c ′(r0) = 0.

I The values of µ and λ at r0 are given by

µ =
(2k + n)(k2 + n(n+ 2) + k(n+ 4)

(k2 + kn+ n2)2
, λ = 0. (58)

I Possibly integrable cases

1. n = −4, and k ∈ {4, 8}, 5. n = 1, and k ∈ {0,±1,−2},
2. n = −2, and k ∈ {0,−2}, 6. n = 2, and k ∈ {0,±2,±4},
3. n = −1, and k ∈ {±1, 2}, 7. n = 4, and k ∈ {0, 4},
4. n = 0, and k ∈ {±1,±2,±4, 8, 24},
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Second example. Integrable cases

1 For n = 0, k = −2 the system (57) is separable with the first integral

I =
1

2
p2

ϕ + cos(2ϕ). (59)

2 The values n = 0, k = 1 correspond to case given in 54.

3 For n = 0, k = 2 the system (57) posses a quadratic first integral

I =
(
p2
r − 4p2

ϕ cot2 r
)

cos(ϕ)− 4prpϕ cot r sin(ϕ)− cos(2r). (60)

4 For n = 2, k = 0 the Hamiltonian (57) corresponds to the integrable
Goryachiev–Chaplygin system with the first integral given in (56).

5 For n = −1, k = 1 the Hamiltonian (57) has a cubic first integral

I =
(

4 sin−2 r + tan2 r
)
p3

ϕ + 4p2
r pϕ + 8pr

√
cos r sin ϕ +

2(3 + cos(2r))√
cos r sin r

pϕ cos ϕ. (61)

Dullin and Matveev3

3H. R. Dullin and V. S. Matveev. A new integrable system on the sphere. Math. Res. Lett.,
11(5-6):715–722, 2004.
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Second example. Not integrable cases

Figure: Poincaré section with n = 1, k = 0 at the level E = 3 on the surface r = 1
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Second example. Not integrable cases

Figure: Poincaré section with n = 1, k = −1 at the level E = 3 on the surface r = 1
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Second example. Not integrable cases

Figure: Poincaré section with n = 0, k = 4 at the level E = 3 on the surface r = 1
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Summary

Conclusions

Morales–Ramis theory - the most effective method

New integrable as well as super-integrable cases were detected

Questions and open problems

If the necessary integrability conditions are satisfied but it seems that the
system is chaotic, how to proof its non-integrability?

To apply the Main Theorem to the Hamiltonian

H =
1

2

(
a(r)p2

r + b(r)p2
ϕ

)
+ c(r)cos ϕ + d(r)sin ϕ, (62)

with a more complex form of functions a, b, c , d , and to find new, still
unknown integrable cases.

THANK YOU FOR YOUR ATTENTION!
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