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1. Statement of problem

On the interval [a, b] we consider the functional differential equation

v′(t) = G(v)(t) (AE)

in the Banach space 〈X, ‖ · ‖X〉, where

• G : C([a, b]; X)→ B([a, b]; X) is a continuous operator,

B C([a, b]; X) is the Banach space of continuous abstract functions v : [a, b] → X en-
dowed with the norm

‖v‖C([a,b];X) = max{‖v(t)‖X : t ∈ [a, b]},
B B([a, b]; X) is the Banach space of Bochner integrable abstract functions g : [a, b]→ X

endowed with the norm

‖g‖B([a,b];X) =
∫ b

a
‖g(s)‖Xds,

• G satisfies the (local) Carathéodory condition, i. e., for any r > 0 there exists qr ∈ L([a, b]; R)
such that

‖G(w)(t)‖X ≤ qr(t) for a. e. t ∈ [a, b] and all w ∈ C([a, b]; X), ‖w‖C([a,b];X) ≤ r.

Definition 1. By a solution of equation (AE) we understand an abstract function v : [a, b] →
X which is strongly absolutely continuous on [a, b], differentiable a. e. on [a, b], and satisfies
equality (AE) a. e. on [a, b].

Remark 2. In Definition 1:

(a) The function v : [a, b] → X is strongly absolutely continuous on [a, b] – v ∈ AC([a, b]; X),
i. e., for every ε > 0 there exists δ > 0 such that for any system {[ak, bk]}n

k=1 of mutually
non-overlapping subintervals of [a, b], the implication

n

∑
k=1

(bk − ak) < δ ⇒
n

∑
k=1
‖v(bk)− v(ak)‖X < ε

holds.

(b) Differentiability a. e. on [a, b] has to be assumed – it does not follow from strong absolute
continuity (in general). Indeed, let X = L([0, 1]; R) and

v(t)(x) =

{
1 if 0 ≤ x ≤ t ≤ 1,
0 if 0 ≤ t < x ≤ 1.

Then v is strongly absolutely continuous on [0, 1], but not differentiable a. e. on [0, 1] (see
[7, Example 7.3.9]).

(c) Solutions of equation (AE) are understood as global and strong ones, notions like local
existence and extendability of solutions have no sense.
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Remark 3. Equation (AE) differs from frequently studied abstract differential equations of the
type

v′ = A(t)v + f (t, vt),

where A(t) are usually densely closed linear operators with values in X that generate a semi-
group . . . . In those cases so-called mild solutions are usually considered, i. e., solutions of the
corresponding integral equation

v(t) = V̂(t, 0)v(0) +
∫ t

0
V̂(t, s) f (s, vs)ds,

where V̂(t, s) denotes an evolution operator for A(t).

Particular cases of (AE)

We mention here two natural and straightforward particular cases of equation (AE):

(A) X = R – scalar first-order functional differential equations (FDEs), for instance,

• differential equation with an argument deviation

v′(t) = f (t, v(t), v(τ(t))),

where f : [a, b]×R2 → R is a Carathéodory function and τ : [a, b] → [a, b] is a mea-
surable function,

• integro-differential equation

v′(t) =
∫ b

a
K(t, s)v(τ(s))ds,

where K : [a, b]× [a, b]→ R and τ : [a, b]→ [a, b] are suitable functions,

• differential equation with maximum

v′(t) = p(t)max
{

v(s) : τ1(t) ≤ s ≤ τ2(s)
}
+ q(s),

where p, q ∈ L([a, b]; R) and τ1, τ2 : [a, b]→ [a, b] are measurable functions.

(B) X = Rn – systems of first-order FDEs and scalar higher-order FDEs

For both cases R and Rn, we have some results concerning solvability as well as unique
solvability of various boundary value problems, theorems on differential inequalities (maxi-
mum principles), oscillations, . . . .

In order to extend our results for FDEs in abstract spaces, some additional operations and
structures are needed in X (like ordering, positivity, monotonicity, unit element, . . . ).

⇓
We are interested in some other particular cases of equation (AE) besides (A) and (B)!
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2. Hyperbolic functional differential equation

On the rectangle D = [a, b]× [c, d] we consider the hyperbolic functional differential equation

∂2u(t, x)
∂t ∂x

= F(u)(t, x), (HE)

where

• F : C(D; R)→ L(D; R) is a continuous operator,

B C(D; R) is the Banach space of continuous functions u : D → R endowed with the
norm ‖u‖C(D;R) = max{|u(t, x)| : (t, x) ∈ D},

B L(D; R) is the Banach space of Lebesgue integrable functions h : D → R endowed
with the norm ‖h‖L(D;R) =

∫∫
D |h(s, η)|dsdη,

• F satisfies the (local) Carathéodory condition, i. e., for any r > 0 there exists qr ∈ L(D; R)
such that

|F(z)(t, x)| ≤ qr(t, x) for a. e. (t, x) ∈ D and all z ∈ C(D; R), ‖z‖C(D;R) ≤ r.

Definition 4. By a solution of equation (HE) we understand a function u : D → R which is
absolutely continuous on D in the sense of Carathéodory and satisfies equality (HE) a. e. on D.

2.1. Absolute continuity in the sense of Carathéodory

Several notions of absolute continuity of functions of two variables can be found in the existing
literature. Let us mention, for instance, absolute continuity in the sense of Schwart, Banach, or
Tonelli and 2-absolute continuity introduced by Malý. However, for a meaningful definition of
strong solutions of equation (HE), absolute continuity in the sense of Carathéodory (see [1]) is
the right one. In the recent terminology, the definition reads as follows:

Definition 5. We say that a function u : D → R is absolutely continuous in the sense of Carathéodory
and we write u ∈ AC(D; R) if the following two conditions hold:

(a) the function of rectangles

Φu([t1, t2]× [x1, x2]) = u(t1, x1)−u(t1, x2)−u(t2, x1)+u(t2, x2) for [t1, t2]× [x1, x2] ⊆ D

associated with u is absolutely continuous1,

(b) the function u(·, c) : [a, b]→ R and u(a, ·) : [c, d]→ R are absolutely continuous.

1Let S(D) denote the system of rectangles [t1, t2]× [x1, x2] contained in D. A function F : S(D) → R is said to
be absolutely continuous (see [3, §7.3]) if it is additive and for every ε > 0 there exists δ > 0 such that for any system
{[ak, bk]× [ck, dk]}n

k=1 of mutually non-overlapping rectangles contained in D, the implication

n

∑
k=1

(bk − ak)(dk − ck) < δ ⇒
n

∑
k=1

∣∣F([ak, bk]× [ck, dk])
∣∣ < ε

holds.
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Carathéodory proved in [1] that the set of those functions coincides with the class of func-
tions admitting a certain integral representation. However, for the study of equation (AE), it
is necessary to know that absolutely continuous functions in the sense of Carathéodory can be
equivalently characterised in terms of properties with respect to each of their variables.

Notation. In what follows we denote:

u′[1](t, x) (or u′t(t, x)) – the first-order partial derivative of the function u at the point (t, x)
with respect to the first variable,

u′[2](t, x) (or u′xt, x)) – the first-order partial derivative of the function u at the point (t, x)
with respect to the second variable,

u′′[1,2](t, x) (or u′′tx(t, x)) – the mixed second-order partial derivative of the function u at the
point (t, x),

u′′[2,1](t, x) (or u′′xt(t, x)) – the mixed second-order partial derivative of the function u at the
point (t, x).

Proposition 6 ([8, Theorem 3.1]). The following assertions are equivalent:

(1) The function u : D → R is absolutely continuous in the sense of Caratheéodory.

(2) The function u : D → R admits the integral representation

u(t, x) = e +
∫ t

a
f (s)ds +

∫ x

c
g(η)dη +

∫∫
[a,t]×[c,x]

h(s, η)dsdη for (t, x) ∈ D,

where e ∈ R, f ∈ L([a, b]; R), g ∈ L([c, d]; R), and h ∈ L(D; R).

(3) The function u : D → R satisfies the following conditions:

(a) u(·, x) ∈ AC([a, b]; R) for every x ∈ [c, d],
u(a, ·) ∈ AC([c, d]; R),

(b) u′[1](t, ·) ∈ AC([c, d]; R) for almost all t ∈ [a, b],

(c) u′′[1,2] ∈ L(D; R).

(4) The function u : D → R satisfies the following conditions:

(A) u(t, ·) ∈ AC([c, d]; R) for every t ∈ [a, b],
u(·, c) ∈ AC([a, b]; R),

(B) u′[2](·, x) ∈ AC([a, b]; R) for almost all x ∈ [c, d],

(C) u′′[2,1] ∈ L(D; R).

2.2. Initial value problems for equation (HE)

Two main initial value problems for equation (HE) are studied in the literature:
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Darboux problem

The values of the solution u are prescribed on both characteristics t = a and x = c, i. e., the
initial conditions are

u(t, c) = α(t) for t ∈ [a, b], u(a, x) = β(x) for x ∈ [c, d], (D)

where α ∈ AC([a, b]; R), β ∈ AC([c, d]; R) are such that α(a) = β(c) (see Fig. 1).
By using Proposition 6, one can show that the function u is a solution of the Darboux prob-

lem (AE), (D) if and only if it is a solution of the integral equation

u(t, x) = −α(a) + α(t) + β(x) +
∫ t

a

∫ x

c
F(u)(s, η)dηds

in the space C(D; R).

t

x

a b

c

d

Fig. 1. Darboux problem Fig. 2. Cauchy problem

Cauchy problem

Let H be a curve, which is defined as the graph of a decreasing continuous (not absolutely
continuous, in general) function h : [a, b] → [c, d] such that h(a) = d and h(b) = c. The values
of the solution u and its partial derivative u′[2] are prescribed onH as follows:

u(t, h(t)) = g(t) for t ∈ [a, b], u′[2](h
−1(x), x) = ψ(x) for a. e. x ∈ [c, d], (C)

where g ∈ C([a, b]; R), ψ ∈ L([c, d]; R) are such that the function

t 7→ g(t) +
∫ d

h(t)
ψ(η)dη

is absolutely continuous on [a, b]2 (see Fig. 2).
By using Proposition 6, one can show that the function u is a solution of the Cauchy problem

(AE), (C) if and only if it is a solution of the integral equation

u(t, x) = g(t) +
∫ x

h(t)
ψ(η)dη +

∫ t

h−1(x)

∫ x

h(s)
F(u)(s, η)dηds

in the space C(D; R).
2In other words, the pair (g, ψ) is h-consistent (see [5, Section 3]).
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3. Main results

The following statements show that both Darboux and Cauchy problem for hyperbolic equation
(HE) can be rewritten as initial value problems for abstract equation (AE) in the Banach space
C([c, d]; R). Consequently, hyperbolic equation (HE) can be regarded as a particular case of
abstract equation (AE) with X = C([c, d]; R).

Darboux problem

Theorem 7. If u is a solution of the problem

∂2u(t, x)
∂t ∂x

= F(u)(t, x), (HE)

u(t, c) = α(t) for t ∈ [a, b], u(a, x) = β(x) for x ∈ [c, d], (D)

then the function v defined by the formula v(t)(x) := u(t, x) for t ∈ [a, b], x ∈ [c, d] is a solution of the
problem

v′(t) = G(v)(t), (AE)
v(a) = β (I)

in the Banach space C([c, d]; R), where

G(w)(t) := w̃(t) for a. e. t ∈ [a, b] and all w ∈ C([a, b]; C([c, d]; R)),

w̃(t)(x) := α′(t) +
∫ x

c
F(z)(t, η)dη for a. e. t ∈ [a, b] and all x ∈ [c, d],

z(t, x) := w(t)(x) for (t, x) ∈ D.


(1)

Conversely, if v is a solution of problem (AE), (I) with G given by (1), then the function u defined by the
formula u(t, x) := v(t)(x) for (t, x) ∈ D is a solution of problem (HE), (D).

Remark 8. Theorem 7 can be easily extended for
“more general” Darboux problem for equation
(HE), where the values of the solution u are
prescribed on both characteristics t = t0 and
x = x0, i. e., the initial conditions are

u(t, x0) = α(t) for t ∈ [a, b],

u(t0, x) = β(x) for x ∈ [c, d],

where t0 ∈ [a, b], x0 ∈ [c, d], α ∈ AC([a, b]; R),
β ∈ AC([c, d]; R) are such that α(t0) = β(x0).

t0

x0

t

x

a b

c

d
D
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Cauchy problem

Theorem 9. If u is a solution of the problem

∂2u(t, x)
∂t ∂x

= F(u)(t, x), (HE)

u(t, h(t)) = g(t) for t ∈ [a, b], u′[2](h
−1(x), x) = ψ(x) for a. e. x ∈ [c, d], (C)

then the function v defined by the formula v(t)(x) := u(t, x) for t ∈ [a, b], x ∈ [c, d] is a solution of the
problem

v′(t) = G(v)(t), (AE)

v(t)(h(t)) = g(t) for t ∈ [a, b] (NL)

in the Banach space C([c, d]; R), where

G(w)(t) := w̃(t) for a. e. t ∈ [a, b] and all w ∈ C([a, b]; C([c, d]; R)),

w̃(t)(x) :=
d
dt

(
g(t) +

∫ d

h(t)
ψ(η)dη

)
+
∫ x

h(t)
F(z)(t, η)dη for a. e. t ∈ [a, b] and all x ∈ [c, d],

z(t, x) := w(t)(x) for (t, x) ∈ D.


(2)

Conversely, if v is a solution of problem (AE), (NL) with G given by (2), then the function u defined by
the formula u(t, x) := v(t)(x) for (t, x) ∈ D is a solution of problem (HE), (C).

How to prove Theorems 7 and 9?

Recall that in this part we have X = C([c, d]; R). In order to prove Theorems 7 and 9, we need
to discuss and prove in detail the following assertions:

(A) Properties of the relationship between abstract functions and functions of two variables
given by the formula

v(t)(x) = u(t, x) for t ∈ [a, b], x ∈ [c, d].

• u ∈ C(D; R) ⇒ v ∈ C([a, b]; X)

• v ∈ C([a, b]; X) ⇒ u ∈ C(D; R)

• u ∈ AC(D; R) ⇒ v ∈ AC([a, b]; X)

It follows from the definition of the strong absolute continuity of abstract functions
and Proposition 6.
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• v ∈ AC([a, b]; X) 6⇒ u ∈ AC(D; R)

Indeed, let f ∈ C([c, d]; R) be such that f 6∈ AC([c, d]; R) and put

v(t) := f for t ∈ [a, b].

Then v ∈ AC([a, b]; X) because it is a constant abstract function. However, u(t, x) =
f (x) for (t, x) ∈ D which yields that u(t, ·) 6∈ AC([c, d]; R) for every t ∈ [a, b] and
thus, u 6∈ AC(D; R).

• u ∈ AC(D; R) ⇒ v′(t) = u′[1](t, ·) for a. e. t ∈ [a, b]

It follows from Proposition 6 that for a. e. t0 ∈ [a, b], we have

lim
h→0

∣∣∣∣u(t0 + h, x)− u(t0, x)
h

− u′[1](t0, x)
∣∣∣∣ = 0 for every x ∈ [c, d].

The main difficulty here is to prove that for a. e. t0 ∈ [a, b], the relation

lim
h→0

∣∣∣∣u(t0 + h, x)− u(t0, x)
h

− u′[1](t0, x)
∣∣∣∣ = 0 uniformly on [c, d]

holds.

(B) Bochner integrability of the abstract function

g(t)(x) := p(t) +
∫ x

c
q(t, η)dη for a. e. t ∈ [a, b] and all x ∈ [c, d],

where p ∈ L([a, b]; R) and q ∈ L(D; R).

• g(t) ∈ C([c, d]; R) for a. e. t ∈ [a, b] and thus, the abstract function g : [a, b]→ X is de-
fined a. e. on [a, b]

• g ∈ B([a, b]; X)

• For any t ∈ [a, b] we have ∫ t

a
g(s)ds ∈ X

and, moreover,(∫ t

a
g(s)ds

)
(x) =

∫ t

a
p(s)ds +

∫ t

a

∫ x

c
q(t, η)dηds for x ∈ [c, d].

Note that the integrals on the right-hand side are Lebesgue ones.

(C) Properties of the operator G in Theorem 7 and 9

• It follows from the above assertions that the operator G defined by formula (1) (re-
spectively, (2)) maps C([a, b]; X) into B([a, b]; X), it is continuous and satisfies the local
Carathéodory condition as required.
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4. One application of Theorem 7

Consider the linear problem

v′(t) = T(v)(t) + g(t); v(a) = v0 (3)

in the Banach space 〈X, ‖ · ‖X〉, where T : C([a, b]; X) → B([a, b]; X) is a linear bounded opera-
tor, g ∈ B([a, b]; X), and v0 ∈ X. In the sequel we assume that

• X is endowed with the preordering 6K generated by a wedge3 K ⊂ X, i. e., we have

x1 6K x2 ⇐⇒ x2 − x1 ∈ K.

It is well-known that theorems on differential inequalities (maximum principles in other
terminology) play very important role in the study of solvability of initial and boundary value
problems for differential equations as well as in the investigation of asymptotic properties of
their solutions. For linear problem (3), a maximum principle can be formulated in the following
way.

Definition 10. We say that a maximum principle holds for problem (3) if the implication

v ∈ AC([a, b]; X),
v is differentiable a. e. on [a, b],
v′(t) >K T(v)(t) for a. e. t ∈ [a, b],
v(a) >K 0

 ⇒ v(t) >K 0 for t ∈ [a, b]

is true.

In the sequel we need to equip the Banach space C([a, b]; X) with a “strict type inequality”:

• for f ∈ C([a, b]; X) we put

f I 0 ⇐⇒ ∀g ∈ C([a, b]; X) ∃ε > 0 such that εg(t) 6K f (t) for t ∈ [a, b].

Theorem 11. Let T be a B-positive 4 operator and there exist a function γ ∈ AC([a, b]; X), which is
differentiable a. e. on [a, b] and satisfies

γ I 0,

γ′(t) >K T(γ)(t) for a. e. t ∈ [a, b].

Then the maximum principle holds for problem (3).

3A non-empty closed set K ⊂ X is called a wedge if

λ1x1 + λ2x2 ∈ K for x1, x2 ∈ X, λ1, λ2 ∈ [0,+∞[ .

4The operator T satisfies

v ∈ C([a, b]; X), v(t) >K 0 for t ∈ [a, b] ⇒
∫ t

a
T(v)(s)ds >K 0 for t ∈ [a, b].
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In both cases X = R and X = Rn, Theorem 11 coincides with our results concerning first-
order functional differential equations and their systems. We will show a consequence of The-
orem 11 for the Darboux problem for linear hyperbolic equations.

Consider the Darboux problem

∂2u(t, x)
∂t ∂x

= `(u)(t, x) + q(t, x),

u(t, c) = α(t) for t ∈ [a, b], u(a, x) = β(x) for x ∈ [c, d],
(4)

where ` : C(D; R) → L(D; R) is a linear bounded operator , q ∈ L(D; R), and the functions α,
β are as in Section 2.2 (we have studied this problem, e. g., in [2, 4, 6, 9–11]).

Definition 12. We say that a strong maximum principle holds for problem (4) if the implication

u ∈ AC(D; R),

u′′[1,2](t, x) ≥ `(u)(t, x) for a. e. (t, x) ∈ D,

u(t, c) ≥ 0 for t ∈ [a, b],
u(a, x) ≥ 0 for x ∈ [c, d],
either u′[1](t, c) ≥ 0 for a. e. t ∈ [a, b]

or u′[2](a, x) ≥ 0 for a. e. x ∈ [c, d]


⇒ u(t, x) ≥ 0 for (t, x) ∈ D (5)

is true.

Theorems 7 and 11 yield

Proposition 13. Let ` be a positive 5 operator and there exist a function ω ∈ AC(D; R) satisfying

ω(t, x) > 0 for (t, x) ∈ D,

ω′′[1,2](t, x) ≥ `(ω)(t, x) for a. e. (t, x) ∈ D,

either ω′[1](t, c) ≥ 0 for a. e. t ∈ [a, b] or ω′[2](a, x) ≥ 0 for a. e. x ∈ [c, d].

Then the strong maximum principle holds for problem (4).

Sketch of the proof:

• Let X := C([c, d]; R) and

K := {y ∈ X : y(x) ≥ 0 for x ∈ [c, d]},
which yields that for f ∈ C([a, b]; X) we have

f I 0 ⇐⇒ f (t)(x) > 0 for t ∈ [a, b], x ∈ [c, d].
5The operator ` satisfies

u ∈ C(D; R), u(t, x) ≥ 0 for (t, x) ∈ D ⇒ `(u)(t, x) ≥ 0 for a. e. (t, x) ∈ D.
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• We put
γ(t)(x) := ω(t, x) for t ∈ [a, b], x ∈ [c, d].

By virtue of properties (A) and (B) stated in Section 3, we show that the abstract function
γ is of the class AC([a, b]; X) and satisfies the inequalities required in Theorem 11 with

T(w)(t) := w̃(t) for a. e. t ∈ [a, b] and all w ∈ C([a, b]; C([c, d]; R)),

where

w̃(t)(x) :=
∫ x

c
`(z)(t, η)dη for a. e. t ∈ [a, b] and all x ∈ [c, d],

z(t, x) := w(t)(x) for (t, x) ∈ D.

• Now let u be a function satisfying the conditions on the left-hand side of implication (5)
and assume that u′[1](t, c) ≥ 0 for a. e. t ∈ [a, b]. Then u is a solution of the Darboux
problem (HE), (D), where

F(z)(t, x) := `(z)(t, x) + u′′[1,2](t, x)− `(u)(t, x) for a. e. (t, x) ∈ D an all z ∈ C(D; R),

α(t) := u(t, c) for t ∈ [a, b],

β(x) := u(a, x) for x ∈ [c, d].

It follows from Theorem 7 that the function

v(t)(x) := u(t, x) for t ∈ [a, b], x ∈ [c, d]

is a solution of the abstract initial value problem (AE), (I), where the operator G is given
by (1). By using the assumptions on the function u, we get

v′(t) >K T(v)(t) for a. e. t ∈ [a, b], v(a) >K 0

and thus, Theorem 11 yields that v(t) >K 0 for t ∈ [a, b], i. e.,

u(t, x) ≥ 0 for (t, x) ∈ D.

Remark 14. Proposition 13 is in a compliance with [6, Theorem 3.1], where a maximum principle
for hyperbolic equations is proved directly.
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