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Initial problem.

Consider the linearized KdV equation

ψt + (C(x, t)ψ)x + h2ψxxx = 0,

where h is a small parameter which is the characteristics of the dispersion
effects of the media, x ∈ R. For this equation, we pose the Cauchy problem
with localized initial data

ψ|t=0 = V

(
x− ξ

µ

)
,

where another small parameter µ is the characteristics of the localization
of the source. Function V (y) is smooth and fast decaing and ξ is the fixed
point.
We are interested in constructing the asymptotics of the Cauchy problem

while µ→ 0.
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Linearization of the KdV equation.

Consider the KdV equation

Ct + CCx + h2Cxxx = 0.

Then let function u(x, t) = C(x, t)+ψ(x, t) with unknown pertrubation
ψ. After substituting such function into KdV equation we obtain equation
for ψ and linearization of this equation leads to the linearized KdV over
background C(x, t)

ψt + (C(x, t)ψ)x + h2ψxxx = 0.

Two cases will be considered: C(x, t) ≡ C = const and variable
C(x, t).
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Constant coefficient. Some history.

The linearized KdV with constant coefficient is well known in the field of
waves with dispersion.
Whitham (Linear and non linear waves) pointed out that this equation

has the solution in the form of Airy function.
Haberman (Applied Partial Differential Equations with Fourier Series

and Boundary Value Problems) has written this solution.

ψ(x, t) =
1

t1/3
Ai

(
x− ξ − Ct

t1/3

)
Karpman (Non-linear waves in dispersive media) showed that the Airy

function is the Green function for liearized KdV

G(x, t) =
1

h2/3 3
√
3t
Ai

(
x− ξ − Ct

h2/3 3
√
3t

)
.
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Ideas for the asymptotics.

For the case of constant coefficients the Fourier method provides the exact
solution.

ψ(x, t) =
1√
2π

+∞∫
−∞

Ṽ (p)e
i
µ(p[(x−ξ)−Ct]+p

3λ2t)
dp.

But for variable coefficients the Fourier method is not constructive.
Therefore we want to provide the method of constructing of the asymptotics
for the solution based on the Maslov’s canonical opertor.
Maslov and Fedoryuk, Semiclassical Approximation for Equations of

Quantum Mechanics
Littlejohn, The Van Vleck Formula, Maslov Theory and Phase Space

Geometry, Journal of Statistical Physics, vol. 68: 1/2, pp. 7-50, 1992
The Maslov’s canonical operator in simple cases is similar to WKB-

solution. The problem to the WKB-type solutions is the critical points.
The canonical operator provides the algorithm for dealing with such points.
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The initial function and Maslov’s canonical operator

Dobrokhotov, Tirozzi, and Shafarevich, Representations of rapidly
decaying functions by the Maslov canonical operator, Math. Notes 82 (5-6),
713-717 (2007).
Initial function V

(
x−ξ
µ

)
can be represented via Maslov’s canonical

operator.

V

(
x− ξ

µ

)
=

1√
2π

∫
e
i
µp(x−ξ)Ṽ (p)dp =

√
µ

i
K
µ
Λ0
[Ṽ ],

√
i = eiπ/4,

where Ṽ (p) if the Fourier tranform of the V (x). And the initial Lagrangian
manifold

Λ0 = {x = ξ, p = α; α ∈ R}
is the vertical line.
We start working in the phase space (x, p) on the Lagrangian manifolds

instead of configuration space. Maslov’s canonical operator provides mapping
from function on manifolds into configuration space.
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Hamiltonian system and the Lagrangian manifolds.
The dynamic of the equation in the phase space can be described via the
Hamiltonian system.
For linearized KdV with constant coefficient the Hamilton function is of

the form
H(x, p) = pC − λ2p3, λ = h/µ.

Λt = {X(α, t), P (α, t)} ≡ {(C − 3λ2α2)t + ξ, α}.
where X and P is the solution to the Hamiltonian system and α ∈ R.
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Focal charts and the ways of integration.

During the time the focal points (Xα(α, t) = 0, the critical points for
WKB) may appear at the Lagrangian manifold.

We can devide the manifold for
the regular charts (no focal points)
and non-regular charts (contains the
forcal points).
There is no one-to-one projection

of the non-regular charts on the x-
plane, but exists projection on the
p-plane.
In regular charts Maslov’s canonical

operator is of the WKB-type. For
non-regular charts it has a little bit
more complicated form.
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The Maslov’s canonical operator.

In the regular chart the precanonical operator is the WKB function

K
µ
Ωj
[f (α)](x, t) =

e
i
µS(α, t)√
|Xα(α, t)|

f (α)|α=α(x, t),

where f (α) is the function on Λt, and α = α(x, t) is the solution of
x = X(α, t).
In the non-regular chart the precanonical operator is of the form of the

Fourier transform

K
µ
Ωj
[f (α)](x, t) =

eiπ/4√
2πµ

∫
e
i
µ(S(α, t)−pX(α, t))√

|Pα(α, t)|
e
i
µpxf (α)|α=α(p, t)dp,

where α = α(p, t) is the solution of p = P (α, t).
The canonical operator has the form

K
µ
Λt
[f (α)](x, t) =

∑
j

e−i
π
2m(Ωj)K

µ
Ωj
[f (α) ej(α)](x, t).
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The asymptotic of the solution.

The asymptotic solution of the Cauchy problem is given by the following
formula

ψ(x, t) = e−im(α0, t)π/2e−iπ/4
√
µ×

×ei/µ
∫ t
0

(
P (α0, τ )Hp(X(α0, τ ), P (α0, τ ))−H(X(α0, τ ), P (α0, τ ))

)
dτK

µ
Λt
[Ṽ (α)].

Here the m(α0, t) is the Maslov index of the path (= ± number of focal
points or the Morse index).
The general problem is to evaluate and simplify the Maslov’s canonical

operator.
For constant coefficients it is the Fourier transform

ψ(x, t) =
1√
2π

+∞∫
−∞

Ṽ (p)e
i
µ(p[(x−ξ)−Ct]+p

3λ2t)
dp.
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Solution of the Cauchy problem

If the initial function V (y) is of the form of Gaussian exponential then
the exact solution has the form

ψ(x, t) =
µ

h2/3 3
√
3t
exp

(
µ6

108t2h4
+
(µ
h

)2 x− ξ − Ct

6t

)
×

×Ai

(
1

h2/3 3
√
3t

(
µ4

12th2
+ (x− ξ − Ct)

))
.

Uniformly by µ, h and t.
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Asymptotics of the solution.

Dobrokhotov, Makrakis, and Nazaikinskii, Maslov’s canonical
operator, Hörmander’s formula, and localization of the Berry-Balazs solution
in the theory of wave beams, Theoret. and Math. Phys. 180 (2), 894-916
(2014).
Hörmander, Fourier Integral Operators I, Acta Math., vol. 127:79, pp.

79–183, 1971
For an arbitrary function V (y) with smooth Fourier transform while
t ≥ t0 > 0 the asymptotics has the form

ψ(x, t) ∼
√
2πg1

(
− µ2η

3th2

)
µ

h2/3 3
√
3t
Ai

(
η

h2/3 3
√
3t

)
−

−i
√
2πg2

(
− µ2η

3th2

)
µ7/3

(h2/3 3
√
3t)2

Ai′
(

η

h2/3 3
√
3t

)
.

η = x− ξ − Ct.
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Here

g1(z) =

{
g+1 (z), z ≥ 0

g−1 (z), z ≤ 0.
, g2(z) =

{
g+2 (z), z ≥ 0

g−2 (z), z ≤ 0,

g+1 (z) =
1

2

(
Ṽ (

√
z) + Ṽ (−

√
z)
)
, g+2 (z) =

1

2
√
z

(
Ṽ (

√
z)− Ṽ (−

√
z)
)
,

g−1 (z) = 3g+1 (0)− 3g+1 (−z) + g+1 (−2z),

g−2 (z) = 3g+2 (0)− 3g+2 (−z) + g+2 (−2z).

Example. Let
V (y) =

1 + y

cosh y
.

Then when x < 0 and ξ = 0, C = 0

ψ(x, t) =
πh1/3

3
√
3t

1

cosh(π2
√

− x
3t)
Ai

(
x

h2/3 3
√
3t

)
−

−2π2h2/3

(3t)2/3

√
−3t

x

sinh3(π2
√
− x
3t)

sinh2(π
√

− x
3t)
Ai′
(

x

h2/3 3
√
3t

)
.
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Example of the asymptotics.

Initial function V (y) = 1, |y| ≤ 1 and V (y) = 0, |y| > 1 has the smooth
Fourier transform therefore the asymptotics for such Cauchy problem can
be evaluated.

The asymptotic consists of the two parts. Near the focal point it has the
form of the Airy function and outside the vicinity of such point it has the
WKB-type corresponding to the sin p/p.
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The variable coefficients.

The Hamilton function
H(x, p, t) = C(x, t)p− λ2p3.

Because h is small we choose the background C(x, t) as a solution of the
Hopf equation instead of KdV.
The Lagrangian manifolds at different times with focal points cusp

(Xαα = 0, Xααα ̸= 0) and fold (Xαα ̸= 0)

To the cusp corresponds Pearcey function and to the fold — Airy function.
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The leading front and waves.

Dobrokhotov and Nazaikinskii, Punctured Lagrangian manifolds and
asymptotic solutions of linear water-wave equations with localized initial
conditions, Math. Notes 101 (5-6), 1053-1060 (2017)
Due to the form of the Hamilton function the fastest velocity is in the

neighbourhood of p = 0. Near this point the solution of the Hamilton
system can be reduced to the following

X̃(α, t) = X0(t) + α2X2(t), P̃ (α, t) = αP0(t).

where for X0(t) and P0(t) the Hamiltonian system with reduced Hamilton
function H0(x, p, t) = C(x, t)p holds

ẋ0 = C(x0, t), ṗ0 = −Cx(x0, t)p0, x0|t=0 = ξ, p0|t=0 = 1,

and X2(t) is the solution of the following equation

ẋ2 = Cx(X0(t), t)x2 − 3λ2P 2
0 (t), x2|t=0 = 0,
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Asymptotic of the leading wave

The asymptotic of the leading wave for t ≥ t0 > 0 is of the form

ψ(x, t) ∼ −µ
√
2πṼ (0)

P
2/3
0 (t)

µ2/3 3
√
X2(t)

Ai

(
−P 2/3

0
x−X0(t)

µ2/3 3
√
X2(t)

)

If we choose the constant coefficient then this formula transforms to

ψ ∼ µ
√
2πṼ (0)

1

h2/3 3
√
3t
Ai

(
x− ξ − Ct

h2/3 3
√
3t

)
.

This is the Green function and is particular case of the formula for the
constant coefficient.
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