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Mixed-Type Equations and Transonic Flows.

Transonic potential flows in the fluid dynamics lead to boundary value
problems for equations of mixed type.

At a certain point of the airfoil, the speed of the flow exceeds the speed
of sound and a shock wave is formed.

Across the shock there is a rapid rise in pressure, temperature and density.
Using the hodograph variables for 2-D flow, the typical equation is:
K(y)ugs + tyy =0

Subsonic flow: K(y)>0 = elliptic equation
Supersonic flow: K(y) <0 = hyperbolic equation
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Guderley-Morawetz Problem.

The Guderley-Morawetz problem is connected to the models of flows around
airfoils.

Equation of mixed elliptic-hyperbolic type

K(y)ugg + uyy =0,

o
B
AI\/ 4, * where K (y)y > 0 for y # 0.
Boundary conditions on o, A1C; and A5C5.

G
G

The plane Guderley-Morawetz mixed-type problem is well studied — see
the survey by Morawetz (2004) for the classical 2-D mixed type BVPs and
their transonic background.

Morawetz (1958): Existence of weak solutions and uniqueness of strong
solutions in weighted Sobolev spaces.

Lax and Phillips (1960): The weak solutions are strong. Regularity.
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Protter-Morawetz Problem.

In the 1950s M.H. Protter proposed
multidimensional analogues of the 2-D
Guderley-Morawetz problem.

The domain G

Let K(y) is such that yK (y) > 0 for y # 0.
In R* with points (z,y) = (z1, 22, 23,y)

consider in G the equation

K(y)(uzyzy + sy, + ursfcs) — Uyy = flx,y)

with boundary conditions u|s, ~x_ = 0.

The Protter-Morawetz problems have been studied by many authors in
1970s and 1980s, but a general understanding of the situation is still not
at hand. Even the question of well posedness is surprisingly subtle and
not completely resolved. Uniqueness results for quasiregular solutions were
obtained by Aziz and Schneider (1979), but there are real obstructions to
existence in this class.

To explain the difficulties and illustrate the differences with the 2-D case
we study the Protter problems in the hyperbolic part of the domain.
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Protter Problems.
Consider the wave equation in R*

uzlzl + uzQIQ + U’Isrs — Utt = f(x7t)

with points (x,t) = (z1, z2, z3,t) in the domain

Q={(z,t):0<t<1/2,t <[22 +23+23 <11t}

bounded by the two characteristic cones

S ={(@,t) : 0 < t <1/2,\/e? +a3 +aZ =11},
Eg:{(m,t):0<t<1/2,\/m:t}

Yo ={t=0,y/a} + 23 + 23 < 1},

centered at the origin O : x = 0,t = 0.

and the ball
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The following multidimensional analogues of Darboux problems were proposed
by Murray Protter:

Problem P1. Find a solution of the
wave equation in ) which satisfies the
boundary conditions

u|20 = 0, u|§31 = O.

Problem P1*. Find a solution of the
wave equation in € which satisfies the
adjoint boundary conditions

ulg, =0, ulg, =0.
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Let us define for £ € NU {0} the functions

£
kp §n+s
/S ( f+n)>d8
n

where P, are the Legendre polynomials, defined by the Rodrigues formula:

1 d
2nn! ds™

P,.(s) = (2 —1)"

Lemma

The functions

x|+t |z|—t

R R L P )

are classical solutions from C>(Q2) N C(Q) of the homogeneous problem
P1* forneN, m=1,....2n+1and k=0,1,...,[(n—1)/2] — 2.

Tong Kwang Chang (1957); Khe Kan Cher (1998)



Spherical Functions.
One can define the spherical functions on the unit sphere S? in R? by

dm
Y2 (21, 20, 23) = C?Cm—mPn(xg)Im{(xQ +ix1)™}, for m=1,..,n
3
2m—+1 m dm . m
Y: (x1,22,23) = C dx—mPn(xg) Re {(x2 +iz1)™}, for m=0,...,n,
3

where C7" are constants and P,, are the Legendre polynomials.

{Y/"}2neNU{0}; m=1,....2n+1
is a complete orthonormal system in L?(S?).

Qo
For convenience, we keep the same notation 8 Q‘ >>>>>>
for the radial extension of the spherical % % 3

function to R3\ {0}, i.e.
Yo (z) = Yo (a/|2)).
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r L, ok_o (TTH, TT_t) with n = 11 and k& = 3.
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Garabedian (1960) proved the uniqueness of the classical solution of Protter
problem. However, a necessary condition for the existence of classical
solution for the Problem P1 is the orthogonality of the right-hand side
function f to all functions vy (z,1).

To avoid an infinite number of necessary conditions, we introduce generalized
solutions for the problem P1, eventually with a singularity at the origin O.

Definition
A function u = u(z,t) is called a generalized solution of the problem P1
in Q, if the following conditions are satisfied:

1) ue C*Q\O), ulsy)o0 = 0,uls, =0, and

2) the identity

/(utwt — Uy Wy — Uy Wyy — Uy Way — fw)dzdt =0
Q

holds for all w € C*(Q) such that w =0 on ¥, and in a
neighborhood of Y.
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The singular solution of Protter problems were studied by: Popivanov and
Schneider; Aldashev; korean mathematicians Jong Duek Jeon et al.(1996),
Jong Bae Choi, Jong Yeoul Park (2002).

Popivanov and Schneider (1993) proved the uniqueness of the generalized
solutions of Protter problems. It is shown that for each n € N there exists
a right-hand side function f € C™(Q), for which the generalized solution
has a strong power-type singularity like »=™. This singularity is isolated at
the vertex O and does not propagate along the characteristic cone.
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Existence of bounded solutions.

N.Popivanov, T.Popov, R.Scherer

Protter-Morawetz multidimensional problems,

Proceedings of the Steklov Institute of Mathematics 278 Issue 1 (2012) 179-198.

Theorem

Let the function f(x,t) belong to C'°(€)). Then the necessary and
sufficient conditions for existence of bounded generalized solution u(x, t)
of the Protter Problem P1 are

/vﬁm(x,t)f(x,t) dxdt = 0,
Q

forallneN, k=0,...,[%2], m=1,...,2n+ 1.
Moreover, this generalized solution u(xz,t) € C*(Q\O) and satisfies the a

priori estimates
lu(z, )| < C | fllcro@my;
3
Dl (@ 0)] + [us(z, )] < C(lz* + )7 If oo

i=1

where the constant C is independent of the function f(x,t).
- -
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Naturally, the necessary orthogonality conditions for the existence of bounded
solutions of Problem P1 include the functions vy, from Lemma 1.
However, it is interesting that there are also some others:
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Singular solutions of Problem P1.

Generally, a smooth function f(z,t) can be expanded as a harmonic series

oo 2n+1

ft) =YY fillzl, )Y (2)

n=0 m=1
with Fourier coefficients
o= [ 1@y do,
S(r)

where S(r) is the three-dimensional sphere {z € R3 : |z| = r}.

The behaviour of the solution depends on the parameters

BY . = / of (@, 8)f () dudt,

Q

where n=0,...,0;k=0,...,[22] andm=1,...,2n+ 1.
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Let us introduce for p € R and k£ € N the series

2n+1

3 (), )Y (@)

m=1

1775 CH1] = 1900, )] o *Z””

Ck(Q)

2n+1[n/2]

B3N

1=1 | m=1 k=0

<

Theorem
Suppose: f(z,t) € C*(Q); the series ||f;n% C°|| and || f;n*; C}|| are
convergent; the power series ®(s) has an infinite radius of convergence.

Then there exists an unique generalized solution u(z,t) € C*(Q\O) of
Problem P1, and

juz,8)] < C [@ (| fH) 15 GOl + |1y cﬂ

Cs
|z| + ¢t

3
S fas (2,8 + el )] < Ol [cb (

o=l

) n ||f;n6;c°\|} ;

where the constants C, C; and C4y are independent of f(x,t).
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Next, we compare the situation here with the results of Popivanov &
Schneider (1995) for (2+1)-D Protter Problems.

The sufficient condition for existence of generalized solution in the (2+1)-D
case is the convergence of the series

=1
Z —1Io < ) (Hf HCO(Q) + ||f2HCO(Q)) , forall e >0,

n= 1

where f! are the Fourier coefficients for the right-hand side
(the analogues of f™ here).
The function I is the modified Bessel function of first kind:

=2 (kl 2 (%)%

k=0

We can use the estimate

Iy(s) < e® for s > 0.
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(2+1)-D case

Suppose that the power series

<I>1(s) =
2"71 (”fiHcv(n) + HszCU(Q)) s"
n=1

has an infinite radius of convergence.

Then there exist unique generalized
solution u, and near the origin we have the
estimate

Ju(z, t)] < C®, {exp (3)} ‘

||

where the constant C'is independent of f.

(3+1)-D case

Suppose that the power series

n=1 L m=1

oo [2n+1
Da(s) == Z |:Z |f777’|00(9)] s"

has an infinite radius of convergence.

Then there exist unique generalized
solution u, and near the origin we have the
estimate

Co }

1 t) <CPy | ———
a0 < 0% [

where the constants C' and Cjy are
independent of f.
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Construction of singular solutions

If f is a harmonic polynomial the solution can have only power type
singularity. However, in the general case stronger singularities are possible.

Suppose that the power series with coefficients o, > 0

o(s) :== Z a,s?
p=0

has infinite radius of convergency.
Is there a solution with singularity at the origin like ¢(1/t)?

Recall that the parameters

Brm = /vgym(x,t)f(x,t) dxdt

Q

“control” the behaviour of the singularity of the solution.
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Theorem

Let f(x,t) € C1(Q), the series ||f;n%; CO||, || f;n*; C|| are convergent,
and the power series ®(s) has an infinite radius of convergence. Suppose
that there is z* = (27, x5, 23) € R such that

oo 2p+4k+1

p+2ky, m *
Z E , D apy2k 2k B, prak(T7) 2 ap
k=0 m=1

Then there exist a number 6 € (0,1/2) that the unique generalized
solution u(z,t) of Problem P1 satisfies the estimate

1
|u(tey, tey, tag, t)| > ¢ <%> fort € (0,0).

Here ay, o are the coefficients of the Legendre polynomial:

(2n — 2k)!
2nkl(n — k)(n — 2k)!

3]
Pn(s) = Zan,kan_2k7 Un,2k = (_1)k
k=0
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For example, it is possible to build an appropriate function f for the

1 . .
constants oy, = —, and thus the corresponding solution to grow at O.
p!

THEOREM. There exists a function f € C*(Q) and a positive number
6 € (0,1/2), such that the corresponding unique generalized solution
u(zy, w2, 73,t) € CHQ\O) of the Problem P1 in R* with right-hand
function f, satisfies the estimate

1
1(0,0,t,t) > exp (;) for 0<t<é.
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Generalized solution with exponential growth
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Graph of 71n(11r1_nl£11(;3|“|))

u~exp(C t71)

DiffEqApp, 4 — 7 September 2017, Brno Singular solutions of Protter problems



THANK YOU FOR YOUR ATTENTION!
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