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Preliminaries on the model

Describing the geometry of the human cornea

The cornea is the transparent front part of the eye that covers the iris,
pupil, and anterior chamber: the cornea, with the anterior chamber and
the lens, refracts light.

In humans, the refractive power of the cornea is about 43 dioptres: the
cornea accounts for approximately 2/3 of the eye’s total optical power.

Better understanding its geometry and its mechanism may help to treat
various common sight diseases, such as myopia, hyperopia,
astigmatism. Indeed, refractive surgery and contact lens fitting depend
on the accuracy of models describing corneal topography.
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Preliminaries on the model

Models for the geometry of the human cornea

There are various mathematical models for the corneal geometry that are presently in use.

The simplest ones are based on conic sections (parabolas, or ellipses) used as meridians
for surfaces of revolution: they provide fairly good fitting results and are very easy to use,
but without much physical motivation.

There are models built on the theory of shells (i.e., solids thin in one direction) and finite
element methods: they are more accurate, but an high price of complexity must be paid.

Other popular models are based on orthogonal polynomials, or on special functions: they
are used to describe aberrations in lens and cornea.

Cornea’s typical sizes:

– eye’s size 24 mm

– corneal diameters: 11.7 mm, the largest,
10.6 mm, the smallest

– corneal thikness: 0.5 � 0.6 mm, in the center,
0.6 � 0.8 mm, at the periphery

– cornea consists of 5 layers.
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Preliminaries on the model

A new model for the geometry of the human cornea

In 2013 Okrasinski & Płociniczak introduced a new nonlinear model,
although in their works they discussed a partial linearization that, however,
revealed effective from the numerical point of view.

Main assumptions

cornea is a thin elastic membrane

u denotes the height of the corneal surface over a reference plane region ⌦ (an
ellipsis), and the surface is kept fixed at the boundary @⌦;

three forces act over: the surface tension, of modulus T , a restoring force, of
elastic constant k , a force associated with the intraocular pressure P;

balancing forces yields
8
><

>:
T div

 
rup

1 + |ru|2

!
� ku +

Pp
1 + |ru|2

= 0 in ⌦,

u = 0 on @⌦.
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Preliminaries on the model

Prescribed anisotropic mean curvature equation

Rearranging terms we are led to the equation

(E) � div

 
rup

1 + |ru|2

!
= �au +

bp
1 + |ru|2 in ⌦

⌦ bounded domain in RN , with boundary @⌦ 2 C0,1

a > 0 and b > 0 parameters.

Formally, (E) is the Euler-Lagrange equation of the functional
Z

⌦
e�bu

q
1 + |ru|2 � b

a

Z

⌦
e�bu

⇣
u +

1
b

⌘
,

involving the anisotropic area term
Z

⌦
e�bu

q
1 + |ru|2.

Remark Equation (E) also provides a model for describing capillarity
phenomena for compressible fluids (Finn, 2001).
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Preliminaries on the model

Aims

I want to discuss

existence

uniqueness

regularity

boundary behaviour

stability

structure of the set

of the solutions of the Dirichlet problem

(P)

8
><

>:
�div

 
rup

1 + |ru|2

!
= �au +

bp
1 + |ru|2 in ⌦

u = 0 on @⌦.
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Preliminaries on the model

Hurdles

The mean curvature operator div

 
rup

1 + |ru|2

!
is

non-uniformly elliptic: degenerate

non-homogeneous: ⇠ �2u = div(ru) at 0,

⇠ �1u = div
� ru
|ru|

�
at 1.

This may yield non-existence phenomena and loss of regularity.

The apparently harmless term
bp

1 + |ru|2 forces to replace

the usual area functional
Z

⌦

q
1 + |ru|2

with the anisotropic area functional
Z

⌦
e�bu

q
1 + |ru|2.
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Preliminaries on the model

Notion of solution

The presence of the mean curvature operator has a relevant impact
on the morphology of solutions;
in general, one cannot expect that

the solutions be regular

the boundary conditions be attained.

Thus we need to introduce an appropriate notion of solution for the problem
under consideration: it is related to the notion of

pseudosolution (Temam, Lischnewski, 1971)

weak/generalized solution (Giaquinta, Giusti, Miranda, 1974)

given for the minimal surface equation, or for a class of prescribed mean
curvature equations, respectively.
Our definition is somehow implicit in a work of Lischnewski, 1978.
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Preliminaries on the model

Notions of solution
Generalized solution
u is a generalized solution if

u 2 W 1,1(⌦) and div

 
rup

1 + |ru|2

!
2 LN(⌦)

⇣
=) rup

1+|ru|2
2 X (⌦)N =)


rup

1+|ru|2
, ⌫

�
2 L1(@⌦)

⌘

u satisfies
a.e. in ⌦

�div

 
rup

1 + |ru|2

!
= �au +

bp
1 + |ru|2

HN�1-a.e. on @⌦
either u(x) = 0

or u(x) > 0 and

"
rup

1 + |ru|2
, ⌫

#
(x) = �1

or u(x) < 0 and

"
rup

1 + |ru|2
, ⌫

#
(x) = 1.
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Preliminaries on the model

Graph of a 2-D generalized solution 1-D profile of a generalized solution
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Preliminaries on the model

Notions of solution

Classical solution

A generalized solution u is classical if u 2 C2(⌦) \ C0(⌦)

and u = 0 on @⌦.

Singular solution

A generalized solution u is singular if it is not classical.

Program

Discuss the existence of

1 generalized solutions

2 classical solutions

3 singular solutions
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Classical solutions

Classical solutions: uniqueness
A uniqueness result

8a � 0 8b 2 R problem (P) has at most one classical solution.

Sketch of proof
change of variable: v = e�bu

rewrite (P) as

(Q)

8
><

>:
�div

 
rvp

v2 + b�2|rv |2

!
= �a ln v � b2vp

v2 + b�2|rv |2 in ⌦

v = 1 on @⌦

recast (Q) as a variational inequality:

(VI)
Z

⌦

q
w2 + b�2|rw |2 �

Z

⌦

q
v2 + b�2|rv |2 � � a

b2

Z

⌦
ln v (w � v)

8w 2 W 1,1(⌦), w = 1 on @⌦,

exploit convexity and monotonicity (of the 0-order term)
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Classical solutions

Existence of classical solutions

An immediate consequence

8a � 0 and b = 0, u = 0 is the unique solution of

(P)

8
><

>:
�div

 
rup

1 + |ru|2

!
= �au +

bp
1 + |ru|2 in ⌦

u = 0 on @⌦.

It is natural to infer, by perturbation, the existence of small classical solutions
for small b.
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Classical solutions

Existence of classical solutions: a local result (b small)

Here: @⌦ 2 C2,↵.

Existence of small classical solutions via the IFT

8a0 62 ⌃ = Spec(�, H1
0 (⌦)) 9�0 > 0 such that |a � a0| < �0, |b| < �0 =)

problem (P) has a unique solution u = u(a, b) 2 C2(⌦), which stems from
the trivial solution.

a

b

eigenvalues 

classical solutions
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Classical solutions

Existence of classical solutions

Existence of a maximal branch via the LS degree

8a > 0 9b1(a) 2 ]0,+1] such that, setting

E =
[

a>0

({a}⇥ ]0, b1(a)[) ✓ R+
0 ⇥ R+

0 ,

8(a, b) 2 E , problem (P) has a unique solution u = u(a, b) 2 C2(⌦), which is
linearly stable, smoothly depends on the parameters (a, b) in the topology of
C2(⌦) and satisfies, in case b1(a) < +1,

kru(a, b)k1 ! +1, as b ! b1(a).

a

b

eigenvalues 

classical solutions
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Classical solutions

Existence of classical solutions: global results

Question
What happens for b large ?

First step

Standard strategy: attack the problem by exploiting its symmetry properties.

Remark Problem (P) is invariant under orthogonal transformations: it is
natural to look for radially symmetric solutions if

⌦ = BR is a ball

⌦ = Sr ,R is a spherical shell

Warning As we are going to see, in the two cases the solvability patters are
quite different.
In fact, these two situations reveal paradigmatic for the whole discussion.
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Classical solutions

Existence of classical solutions: global results

Existence of classical radial solutions in balls

8N � 1 8a > 0 8b > 0 8R > 0 problem (P) has a unique solution u 2 C2(BR),
such that u(x) = v(|x |), with v positive, decreasing, concave in [0, R].

Sketch of proof (Upper and lower solutions method)

�v 00 = �av(1 + v 02)3/2 + b(1 + v 02) +
N � 1

t
v 0(1 + v 02) in ]0, R[,

v 0(0) = 0, v(R) = 0

↵ = 0 lower solution, � = b
a upper solution

Warning: superquadratic growth w.r. to the gradient

v solution, 0  v  b
a =) v decreasing and concave

one-sided Bernstein-Nagumo condition =) gradient bound

Schauder theorem =) solvability
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Classical solutions

Existence vs non-existence of classical solutions

Remark In spherical shells the previous argument does not work anymore.
Now derivatives of solutions change sign: the right hand side of the equation
exhibits a genuine (i.e., two-sided) cubic growth w.r. to the gradient

�v 00 = �av(1 + v 02)3/2 + b(1 + v 02) +
N � 1

t
v 0(1 + v 02).

Gradient’s blow up might occur! As numerical simulations show:
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Classical solutions

Existence vs non-existence of classical solutions

Existence vs non-existence of classical radial solutions in spherical shells

Numerical simulations show:

the spherical shell Sr ,R is thin, i.e., R � r ⌧ 1
=) the solution is classical

the spherical shell Sr ,R is thick, i.e., R � r � 1 :

r � 1 =) the solution is classical
r ⌧ 1 =) the solution is singular (for b � 1).

Questions
How to get an analytical proof?
How to discuss the case of general domains?
More sophisticated tools of investigation seem to be required.
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Generalized solutions

Variational formulation

The change of variable v = e�bu transforms

(Q)

8
><

>:
�div

 
rup

1 + |ru|2

!
= �au +

bp
1 + |ru|2 in ⌦

u = 0 on @⌦

into

(P)

8
><

>:
�div

 
rvp

v2 + b�2|rv |2

!
= �a ln v � b2vp

v2 + b�2|rv |2 in ⌦

v = 1 on @⌦,

whose associated functional is

K(v) =
Z

⌦

q
v2 + b�2|rv |2 + a

b2

Z

⌦
v+(ln v+ � 1).
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Generalized solutions

Variational formulation

Due to the linear growth w.r. to the gradient of
Z

⌦

q
v2 + b�2|rv |2,

the natural domain of the functional K would be W 1,1(⌦), yet W 1,1(⌦)

is not a favorable framework where to settle variational methods.
Indeed, the appropriate space is BV (⌦).

Relaxation of K from W 1,1(⌦) to BV (⌦):

I(v) =
Z

⌦

q
v2 + b�2|Dv |2 + a

b2

Z

⌦
v+(ln v+ � 1)+

1
b

Z

@⌦
|v � 1|,

where
Z

⌦

q
v2 + b�2|Dv |2 = inf

⇢
lim inf
n!+1

Z

⌦

q
w2

n + b�2|rwn|2 |

wn 2 W 1,1(⌦), wn ! v in L1(⌦)
 

.

The functional
Z

⌦

q
v2 + b�2|Dv |2 + 1

b

Z

@⌦
|v � 1| satisfies suitable

semicontinuity, approximation and lattice properties.
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Generalized solutions

Minimization and regularity

Global minimization

The functional I has a unique global minimizer v 2 BV (⌦),

with e� b2
a  v  1.

Sketch of proof (standard)

I is bounded from below

I is lower semicontinuous w.r. to the L1-convergence in BV (⌦)

=) 9 a minimizer, positive and bounded

I is strictly convex on the positive cone

=) the minimizer is unique.
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Generalized solutions

Minimization and regularity

Interior regularity

v 2 C1(⌦) \ W 1,1(⌦)

Sketch of proof (quite technical)

construction of a sequence of local approximating problems
(extending some ideas from Gerhardt, 1974)

Serrin’s type existence result (proven for anisotropic equations by
Marquardt, 2009) for solving the approximating problems

classical Ladyzhenskaya-Uraltseva gradient estimates

Schauder estimates.
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Generalized solutions

Existence of generalized solutions

Set u = � 1
b ln v 2 C1(⌦) \ W 1,1(⌦).

u satisfies :
0  u  b

a

div

 
rup

1 + |ru|2

!
2 L1(⌦)

�div

 
rup

1 + |ru|2

!
= �au +

bp
1 + |ru|2 a.e. in ⌦

for HN�1-a.e. x 2 @⌦
either u(x) = 0

or else u(x) > 0 and

"
rup

1 + |ru|2
, ⌫

#
= �1

u minimizes in W 1,1(⌦) \ L1(⌦) the functional
Z

⌦
e�bz

q
1 + |rz|2 � a

b

Z

⌦
e�bz

⇣
z +

1
b

⌘
+

1
b

Z

@⌦
|z � 1|

u is stable.
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Generalized solutions

Existence of generalized solutions

Conclusion: existence and uniqueness of a generalized solution

8N � 2 8a > 0 8b > 0 problem (P) has a unique generalized solution.

Questions
At which points of the boundary is the Dirichlet condition attained?
When are the generalized solutions classical?

A detailed study of the boundary behaviour of the generalized solutions is in
order.
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Classical versus singular solutions

Boundary behaviour
(Upper and lower solutions come back into the scene)

Generalized upper and lower solutions

. � is generalized upper solution of (P) if

� 2 W 1,1(⌦) \ L1(⌦) and div

 
r�p

1 + |r�|2

!
2 LN(⌦)

� satisfies

a.e. in ⌦

�div

 
r�p

1 + |r�|2

!
� a� +

bp
1 + |r�|2

HN�1-a.e. on @⌦
either �(x) � 0

or else �(x) < 0 and

"
r�p

1 + |r�|2
, ⌫

#
(x) = 1.

. A generalized lower solution ↵ is defined similarly, by reversing signs.
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Classical versus singular solutions

Boundary behaviour

Comparison principle and localization

↵ generalized lower solution, � generalized upper solution, u generalized
solution =) ↵  u  �

. Constructing suitable lower and upper solutions (barriers) may force
the solution to attain the boundary conditions

A geometric condition
⌦ satisfies at y 2 @⌦ an
exterior sphere condition of radius r
if 9 an open ball B of radius r > 0
s.t. B \ ⌦ = ; and y 2 @B

Remark (obvious)
All points of @⌦ belonging to the boundary
of the convex hull of ⌦ satisfy
an exterior sphere condition
of arbitrary radius.

B

B

B

y

y

y
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Classical versus singular solutions

Boundary behaviour

Construction of an upper solution

⌦ satisfies at y 2 @⌦ an exterior sphere
condition with radius r � (N � 1) b

a
=) 9� positive radial upper solution s.t.

�(y) = 0, defined on a spherical shell
including ⌦ and having inner radius r r r + b

a
R

b
a

1

Conclusion: continuity at the boundary

⌦ satisfies at y 2 @⌦ an exterior sphere condition with radius r � (N � 1) b
a

=) 9� upper solution s.t. �(y) = 0 =) 0  u  �
=) u is continuous at y 2 @⌦ and u(y) = 0

Remark
For any Lipschitz domain ⌦ and any a, b > 0, the subset of @⌦ where u
attains the boundary conditions is non-empty.
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Classical versus singular solutions

Classical versus singular solutions
Here: ⌦ 2 C2,↵.

Solvability patterns: revisited

8N � 2 8a > 0:

either 8b > 0 9! generalized solution u which is classical

or else 9 b̂ = b̂(a) > 0 s.t.

0 < b  b̂ =) 9! generalized solution u which is classical

b > b̂ =) 9! generalized solution u which is singular

Additional information:

(a, b) 7! u(a, b) continuous in L1(⌦)

8a > 0, b 7! u(a, b) increasing

8b > 0, a 7! u(a, b) decreasing

a

b

eigenvalues 

classical solutions

singular solutions
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Classical versus singular solutions

Classical versus singular solutions
Here: ⌦ 2 C2,↵.

Solvability patterns: revisited

8N � 2 8a > 0:

either 8b > 0 9! generalized solution u which is classical

or else 9 b̂ = b̂(a) > 0 s.t.

0 < b  b̂ =) 9! generalized solution u which is classical

b > b̂ =) 9! generalized solution u which is singular

Question:
do singular solutions really exist?

a

b

eigenvalues 

classical solutions

singular solutions
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Classical versus singular solutions

The case of spherical shells: conclusion
Existence of classical solutions on thin spherical shells

8N � 2 8a > 0 8b > 0 8r > 0 9R⇤ > r s.t. R 2 ]r ,R⇤[

=) 9! generalized solution which is classical,

with u(x) = v(|x |), v 2 C2([r ,R]), v(r) = 0, v(R) = 0

Sketch of proof

Construct a radial upper solution satisfying the Dirichlet boundary conditions

Existence of singular solutions on thick spherical shells
8N � 2 8a > 0 8r > 0 9R⇤ > 0 9b⇤ > 0 s.t. R > R⇤ b > b⇤

=) 9! generalized solution which is singular, with

u(x) = v(|x |), v 2 C2(]r ,R]), v(r) > 0, v 0(r) = +1, v(R) = 0

Sketch of proof

Construct a singular radial lower solution

r r + � s R

�

The Helmet Function

1
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Thank you for so much your
kind attention!
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