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Dear Prof, Ledoux,

Thank you very much for your letter of June 23, I shall welcome
with pleasure Mr, Mawhin et our Conference in September. Unfortuna=-
tely we have no more announcement in English about the Conference
available. So I can enclose only an application form.

We could reserve for Mr, Mawhin a room in college in Prague, but
we should be scarcely able to guarantee the participation at the
sight-seeing tour of Prague on September 7 and at the outing on

September 9, if Mr, Mawhin were interested in these events. The

closing date for sending the application form was April 30,

Yours sincerely,
S Bria Aadns
Dr. Ing. Djaékov, Dr Sc.
Chairman of the Organizing Committee
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Thank you to my Czech colleagues for 50 years of fruitful collaboration
and frienship

and thank you to my friends of Brno for 45 years of warm hospitality
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A classical existence theorem

® R" (|9, | |, Br; feC(0,1] x R" R")
® Thm. If 4R >0 :
either

(ul f(t,u)) =0, V(t,u) € 0,1] x OBp,

(ul f(t,u)) <0, V(I,u) €0,1] x IBp,
then

v = f(t,x), (0) = x(1)

has at least one solution taking values in Bp
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A classical existence theorem

o an <|>7 | |7 BR; f S C([Oal] X anRn)
® Thm. /f dR > 0:
either
(ulf(t,u)) >0, V(t,u) € [0,1] X IBR,
or
(ulf(t,u)) <0, V(t,u) € [0,1] x IBR,
then
v = f(t,z), ©(0) = x(1)
has at least one solution taking values in Bp
® equivalent statements: 7 =1 —1

°

nonlinear version of the linear result :
Prop. VA € R\ {0}, Ve e C(|0,T],R")
v’ = x+e(t), 2(0) = x(1) has a solution
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<uf(t,u)>=0 <uf(t,u)>=<0
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References

® special case (not mentioned !) of Theorem 3.2 in M. A.
KRASNOSEL'SKII, The Operator of Translation along the Trajectories
of Differential Equations, Moscow, 1966

Translation Along

M. A. Krasnosel'skii

Volume Nineteen
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Krasnosel’skii’s theorem

® Thm. If 3C, bounded open convex set, ®; ¢ C1(R",R)
(i=1,...,r): C={uecR":®;(u) <0 (i=1,...,7)},
®;(u) =0 forsome uwe 0C = V&;(u)# 0, and

either

(V®;(w)|f(t,u)) >0, V (t,u) €[0,1] x dC, Vi € afu),
Or(V@(u)\f(t,u)} <0,V (t,u) € 10,1 x 8C, Vi € alu),
where

alu) :={ie{l,...,r}: ®;(u) =0}
then

v = f(t,x), (0) = x(1)

has at least one solution taking values in C

® firstexistencethm: C'= Bg, r =1, ®1(u) = %(|u|2 — R?)
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sustafson-Schmitt’s theorem

® (' open convex neighborhood of 0 in R"™
s Yuedl, dv(u) e R"\ {0} : (v(u)lu) >0 and
CCcl{veR": (v(u)|v—u) <0}
s v:0C — R"\ {0} :outer normal field on 0C
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sustafson-Schmitt’s theorem

® (' open convex neighborhood of 0 in R"™
s Yuedl, dv(u) e R"\ {0} : (v(u)lu) >0 and
CCcl{veR": (v(u)|v—u) <0}
s v:0C — R"\ {0} :outer normal field on 0C

#® Gustafson-Schmitt’s thm. /f 3 C', bounded convex open
neighborhood of 0 in R", and v, outer normal field on OC' :
either

(v(u)|f(t,u) >0, V(t,u) € [0,1] x 9C

(v(u)|f(t,u) <0, V(t,u) € [0,1] x OC,
then

r’ = f(t,ﬂ?), 33(0) — 33(1)

has at least one solution taking values in C

® Proc. Amer. Math. Soc. 42 (1974), 161—-166
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v

<v(u) f(t,u)>=0 <v(u) f(t,u)>=<0
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Comparison of the results

® KRASNOSELSKII'S monograph not quoted by GUSTAFSON-SCHMITT

® special case (' = Bp explicitely mentioned by
GUSTAFSON-SCHMITT
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Comparison of the results

°

KRASNOSEL SKII'S monograph not quoted by GUSTAFSON-SCHMITT

°

special case (' = Bp explicitely mentioned by
GUSTAFSON-SCHMITT

® J.M., Diford 74 (Stara Lesna 1974), |, 37—60 :

# connection Krasnosel’skii—Gustafson-Schmitt explicited

» extension of Gustafson-Schmitt’s thm to weak inequalities

® Krasnosel’skii's thm special case of extended Gustafson-Schmitt’s
thm
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Comparison of the results

°

KRASNOSEL SKII'S monograph not quoted by GUSTAFSON-SCHMITT

°

special case (' = Bp explicitely mentioned by
GUSTAFSON-SCHMITT
® J.M., Diford 74 (Stara Lesna 1974), |, 37—60 :
# connection Krasnosel’skii—Gustafson-Schmitt explicited
» extension of Gustafson-Schmitt’s thm to weak inequalities
® Krasnosel’skii's thm special case of extended Gustafson-Schmitt’s
thm
® several generalizations of Gustafson-Schmitt’s thm in
o J.M., Diford 74

# GAINES-J.M., Coincidence Degree and Nonlinear Differential
Equations, Springer, 1977
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Nonlocal terminal BVP

#® h:|0,1] — R nondecreasing, fol dh(s) =1,
h(0) < h(a) forsome « € (0,1)

® Thm. If AC, open, bounded, convex neighborhood of 0 in R™
and v, outer normal field on 0C' :
w(u)|f(t,u)) >0, V(t,u) €0,1] x 9C,
then

¥ = f(t,x), x(1) = [ dh(s)x(s)

has at least one solution taking values in C
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Nonlocal terminal BVP

#® h:|0,1] — R nondecreasing, fOl dh(s) =1,
h(0) < h(a) forsome « € (0,1)
® Thm. If AC, open, bounded, convex neighborhood of 0 in R™

and v, outer normal field on 0C' :
(v(uw)|f(t,u)) >0, V(t,u) € [0,1] x 9C,
then

v = f(t.x), (1) = [y dh(s)z(s)
has at least one solution taking values in C

® J.M.-K. SZYMANSKA-DEBOWSKA, J. Nonlin. Convex Anal. 18
(2017), 149-160 (more general versions are given there)

® special case : multipoint boundary conditions
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Nonlocal initial BVP

#® ) :|0,1] — R non decreasing, fOl dh(s) =1,
h(a) < h(1) forsome « € (0,1)

® Thm. If AC, open, bounded, convex neighborhood of 0 in R™
and v, outer normal field on 0C' :

(w(u)|f(t,u)) <0, V(tu) €[0,1] x IC,
then

¥ = f(t,x), £(0) = [ dh(s)x(s) -

has at least one solution taking values in C
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Nonlocal initial BVP

2

<

h :10,1] — R non decreasing, fol dh(s) =1,

h(a) < h(1) forsome « € (0,1)

Thm. /f 3C, open, bounded, convex neighborhood of 0 in R"
and v, outer normal field on 0C' :

(v(uw)|f(t,u)) <0, V(t,u) €[0,1] x 9C,
then

v = f(t,x), 2(0) = [y dh(s)z(s)
has at least one solution taking values in C

J.M.-K. SZYMANSKA-DEBOWSKA, J. Nonlin. Convex Anal. 18
(2017), 149-160 (more general versions are given there)

special case : multipoint boundary conditions
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special case of a ball

® Cor. If h:|0,1] — R is nondecreasing, fOl dh(s) =1,
h(0) < h(a) forsome « € (0,1), and if
AR >0 : (u|f(t,u)) >0, V(t,u) € |0,1] x OBRg,
then
¥ = f(t,x), x(1) = [ dh(s)x(s)

has at least one solution taking values in Bp.
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special case of a ball

® Cor. If h:|0,1] — R is nondecreasing, fOl dh(s) =1,
h(0) < h(a) forsome « € (0,1), and if
AR >0 : (u|f(t,u)) >0, V(t,u) € |0,1] x OBRg,
then
¥ = f(t,x), x(1) = [ dh(s)x(s)

has at least one solution taking values in Bp.

® Cor. Ifh:|0,1] — R is nondecreasing, fOl dh(s) =1,
h(a) < h(1) forsome « € (0,1), and if
AR >0 : (u|f(t,u)) <0, V(t,u) € |0,1] x IBRg,
then
¥ = f(t,x), £(0) = [ dh(s)x(s)

has at least one solution taking values in Bp
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Remarks, questions and strategy

# in J.M.-S-D’s thms, the sense of inequality for (u|f (%, u)) depends
on the BC, in contrast with the periodic case

® however VA € R\ {0}, 2" = Ax + e(t),

2(1) = £[2(1/2) + 2(0)] or z(0) = &[x(1/2) + z(1)]
has a solution ¥ e € C(|0, 1], R™)

® can we have existence with the opposite sign ?
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Remarks, questions and strategy

# in J.M.-S-D’s thms, the sense of inequality for (u|f (%, u)) depends
on the BC, in contrast with the periodic case

® however VA € R\ {0}, 2" = Ax + e(t),
2(1) = £[2(1/2) + 2(0)] or z(0) = &[x(1/2) + z(1)]
has a solution ¥ e € C(|0, 1], R™)

can we have existence with the opposite sign ?

L I

we construct counterexamples to show the answer is no
» 2-dimensional eigenvalue problems 2z’ = Az with 3-point BC

» use Fredholm alternative to obtain forcing terms e(%)
2 = Az + e(t) +BC has no solution for \ eigenvalue

# show that this non-nomogeneous problem written as a
2-dimensional system 2’ = f(¢,x) satisfies the conditions of
the J.M.—S-D’s corollaries with opposite signs for (u|f (¢, u))
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Cigenvalue problems

®» )c(C 2:(0,1]=>C

® =)z z(1) = 4[2(0) + 2(1/2)]
» eigenvalues : 2k(2mi), —logd + (2k + 1)(27i) (k € Z)
»# all contained in the left half plane and imaginary axis
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Cigenvalue problems

®» )c(C 2:(0,1]=>C
® =)z z(1) = 4[2(0) + 2(1/2)]
» eigenvalues : 2k(2mi), —logd + (2k + 1)(27i) (k € Z)
»# all contained in the left half plane and imaginary axis
® =)z, 2(0) = 4[2(1/2) + 2(1)]
» eigenvalues : 2k(2mi), logd + (2k + 1)(2mi) (k € Z)
»# all contained in the right half plane and imaginary axis

® all complex, except 0
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Cigenvalue problems

®» )c(C 2:(0,1]=>C
2 =Xz, 2(1) = £[2(0) + 2(1/2)]
» eigenvalues : 2k(2mi), —logd + (2k + 1)(27i) (k € Z)
»# all contained in the left half plane and imaginary axis
® =)z, 2(0) = 4[2(1/2) + 2(1)]
» eigenvalues : 2k(2mi), logd + (2k + 1)(2mi) (k € Z)
»# all contained in the right half plane and imaginary axis

°

°

all complex, except 0

°

Rem. 2 = \z, 2(0) = z(1) has the eigenvalues
k(2mi), (k € Z)

Half of those eigenvalues move to Jtz = log 4 (resp.
Rz = —log 4 ) for the three-point BC
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A A A
® ® ®
® ® ®
oo 4 o 4mi ® 4 ¢
~08 : log 4
. 2 8
+2m 9 ? Y o
- - > @ >
0 0 0
® ® ®
® ® ®
® ® ®
® ® ®

x(1) =(1/2)[x(0) +x(1/2)] x(0) =x(1) x(0)=(1/2)[x(1/2) +x(1)]
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{redholm alternative

® prop. A is an eigenvalue of
2 =Xz, 2(1) = 5[2(0) + 2(1/2)]
(resp.  Z'(t) = Az(t), 2(0) = 5[2(1/2) + 2(1)])
& dep € C([0,1],C) (resp. der € C(|0,1],C)) :
Z(t) = z(t) +er(t), 2(1) = 3[2(0) + 2(1/2)]
l(:esp. zl’(t) = Mz(t) + er(t), 2(0) = 5[2(1/2) + 2(1)])
as no solution
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{redholm alternative

® prop. A is an eigenvalue of
7= Az, z(l)—%[() (1
(resp.  2'(t) = Az(t), 2(0) = 3
& der € C(0,1],C) (resp. dey €
2(t) = Az(t) +er(t), 2(1) = g[2(0
0) =

(resp.  2'(t) = Az(t) +ef(t), 2(0)
has no solution

)
2

® proof. (1st case; 2nd analogous)

o Lz:=2 —z=e(t), 2(1) = 5[2(0) + 2(1/2)]

has a unique solution z = L1

s L71:0([0,1],C) — C([0,1],C is compact
s EVproblem & z=(A—1)L 2+ L7}
# Riesz theory = Fredholm alternative holds

Systems of ordinary differential equations with nonlocal boundary conditions
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lerminal type counterexample

® e € C([O, 1],@) :
Z(t) = (—log4d +2mi)z(t) + er(t), 2(1) = 3[2(0) + 2(1/2)]
has no solution




lerminal type counterexample

® cpc(C(0,1],C) :
E’(t) = (I— log 4 + 2mi)2(t) + ep(t), 2(1) = 5[2(0) + 2(1/2)]
as no solution
9 z(t) :=wx1(t) +ixa(t), er(t) =er1(t) +iepa(t)

(
—(log4)x1(t) — 2mxa(t) + er1 (%)
(

o (1) =
r5(t) = 2mx1(t) — (log4)xa(t) + hra(t)
r1(1) = 5[x1(0) + 21(1/2)]
r2(1) = §[2(0) + 22(1/2)]
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lerminal type counterexample

® cpc(C(0,1],C) :

E’(t) = (I— log 4 + 2mi)2(t) + ep(t), 2(1) = 5[2(0) + 2(1/2)]
as no solution

9 z(t) :=wx1(t) +ixa(t), er(t) =er1(t) +iepa(t)
—(log4)x1(t) — 2mxa(t) + er1 (%)
(

» 7y(t) =
r5(t) = 2mx1(t) — (log4)xa(t) + hra(t)
r1(1) = 3[z1(0) + 21(1/2)]
19(1) = 3[22(0) + 22(1/2)]
» fltu):=
(—(log 4

) — 2Tu9 + ET. 1(t), 2TU] — (log 4)U2 + €T72(t))
)

® (ulf(t,u)) = —(log4)(ui + u3) + wrer1(t) + uzer(t)
< —(log4)|ul® + ler(®)||lu] <0 when |u| > R >0
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(nitial type counterexample

® ;7 c C([O, 1],@) :
2 (t) = (log 4 + 2mi)2(t) + er(t), 2(1) = 4[2(0) + 2(1/2)]
has no solution




(nitial type counterexample

® c;€C(0,1],C) :
ﬁl(t) = (llog4 +2mi)2(t) + er(t), 2(1) = 5[2(0) + 2(1/2)]
as no solution
8 2(t):=uwi(t) +ixo(t), er(t) = jl(t)—|—i6[’2(t)

(
—(log4)z1(t) — 2maa(t) + er1(t)
(

o (1) =
r5(t) = 2mx1(t) — (log4)xa(t) + ero(t)
r1(1) = 5[x1(0) + 21(1/2)]
r2(1) = §[2(0) + 22(1/2)]
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(nitial type counterexample

® c;€C(0,1],C) :

ﬁ’(t) = (llog4 +2mi)z(t) + e (1), 2(1) = 5[2(0) + 2(1/2)]
as no solution

© Z(t) = :El( )—|—Z:62(t), ( ) [1(t) —|—7J6[’2(t)
—(log4)z1(t) — 2maa(t) + er1(t)
(

» (1) =
r5(t) = 2mx1(t) — (log4)xa(t) + ero(t)
1(1) = glz1(0) + 21(1/2)]
12(1) = 3la2(0) +22(1/2)]
® f(tiu):=
((log 4)uy — 2mug + er1(t), 2mrur — (log4)ug + 6[’2(15))
® (ulf(t,u)) = (log4)(uf +u3) +urer1(t) + uzer ()

[V

> (log4)|ul* — ler||u| >0 when |u| > R >0
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Comments

® the symmetry-breaking with respect to reflection on imaginary axis
for the spectra of the 3-point BVP explains the difference in
existence conditions with respect to periodic conditions

® despite of the same real spectrum {0} for the three problems, the
presence of the complex spectrum in the left- or the right half plane
influences like a ghost the existence conditions for solutions of the
real nonlinear systems
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Comments

® the symmetry-breaking with respect to reflection on imaginary axis
for the spectra of the 3-point BVP explains the difference in
existence conditions with respect to periodic conditions

® despite of the same real spectrum {0} for the three problems, the
presence of the complex spectrum in the left- or the right half plane
influences like a ghost the existence conditions for solutions of the
real nonlinear systems

® maybe extra conditions upon | could provide existence results
with the sign conditions of the counterexamples

® strictly speaking, our counterexamples do not cover the case of
n =1 orevenof n odd. For n = 3, add the equations

vl = —(log 4)z3 + B2 (21 + 22), 3(1) = $[23(0) + 23(1/2)]
vl = (log4)ws + B4 (w1 + 22), 23(0) = L[w3(1/2) + 23(1)]
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sharpness of the periodic case

® 2 =2miz+ ¥ 2(0) = 2(1)
& (e7?™2) =1, z(0) = 2(1) has no solution
® =1 +1r9 = :L’l = —2mx9 + COS(Q?Tt)

rh, = 2mxy + sin(27t), x1(0) = z1(1), 22(0) = x2(1)
has no solution
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sharpness of the periodic case

8 2 =2miz+ e’ 2(0) = 2(1)
& (e7?™2) =1, z(0) = 2(1) has no solution
® =1 +1r9 = :L'l —2Tx9 + COS(Q?Tt)
rh, = 2mxy + sin(27t), x1(0) = z1(1), 22(0) = x2(1)
has no solution
® fi (t, 1, 332) = —2mxo + COS(27Tt)
fg(t, 1, 332) — 2mx1 + COS(Qﬂit)
v = (r1,72), f(t,2) = (f1(t, 71, 72), f2(t, ¥1, 2))
(x, f(t,x)) = cos(2mt)x1 + sin(27t)xs
r = R|cos(2n0),sin(270)] € OBR
(z, f(t,x)) = Rcos[2r(t — 0)] (¢,0 € [0,1])
takes both positive and negative values

o o
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Nonlocal BVP for 2nd order systems - 1

® g:[0,1] x R" x R" — R"™ continuous, A : |0,1] — IR non
decreasing, fol dh =1, h(a) > h(0) forsome a € (0,1)

® Thm. If AC', open, bounded, convex neighborhood of 0 in R"™
and v, outer normal field on 0C' :

(w(v)|g(t,u,v)) >0, ¥ (t,u,v) €[0,1] x C xaC,
then

" =g(t,z,2"), x(0) =0, 2/(1) = fol dh(s)x'(s) ()

has at least one solution with « and x' taking values in C
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® g:[0,1] x R" x R" — R"™ continuous, A : |0,1] — IR non
decreasing, fol dh =1, h(a) > h(0) forsome a € (0,1)

® Thm. If AC', open, bounded, convex neighborhood of 0 in R"™
and v, outer normal field on 0C' :

(w(v)|g(t,u,v)) >0, ¥ (t,u,v) €[0,1] x C xaC,
then

" =g(t,z,2"), x(0) =0, 2/(1) = fol dh(s)x'(s) ()

has at least one solution with « and x' taking values in C

® Corr. If AR >0 B
(vlg(t,u,v)) >0, V(t,u,v) € [0,1] x Br X 0BRg, then
(*) has at least one solution with = and x' taking values in B

® J.M.-SzZYMANSKA-DEBOWSKA, Proc. AMS 145 (2017), 2023-2032
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Nonlocal BVP for 2nd order systems - 2

# similar thm and corollary, with the same sign for (v, g( LU, V),
for the boundary conditions  x(0) = 0, z/( fo dh(s)z'(s)
when h(«a) < h(1) forsome o € (0, 1)

® adaptations of 1st order counterexamples show that both existence
conclusions need not be true when (v, g(t,u,v)) <0
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# similar thm and corollary, with the same sign for (v, g( LU, V),
for the boundary conditions  x(0) = 0, z/( fo dh(s)z'(s)
when h(«a) < h(1) forsome o € (0, 1)

® adaptations of 1st order counterexamples show that both existence
conclusions need not be true when (v, g(t,u,v)) <0

® Cor.If AR >0 : either B
(vlg(t,u,v))y >0, V(t,u,v) € |0,1] X Br x 0B
or (vlg(t,u,v)) <0, V(t,u,v) € [0,1] x Br x OBg,
then x" = g(t,x, 2’ ), z(0) =0, 2/(0) = 2/(1)
has at least one solution with x and x' taking values in Bp
» proof. a special case of both problems above

® adaptation of 1st order counterexample show that the result is sharp
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Thank you for your kind attention |
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