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A classical existence theorem

Rn, 〈·|·〉, | · |, BR; f ∈ C([0, 1]× Rn,Rn)

Thm. If ∃R > 0 :
either

〈u|f(t, u)〉 ≥ 0, ∀ (t, u) ∈ [0, 1]× ∂BR,
or

〈u|f(t, u)〉 ≤ 0, ∀ (t, u) ∈ [0, 1]× ∂BR,
then

x′ = f(t, x), x(0) = x(1)

has at least one solution taking values in BR
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A classical existence theorem

Rn, 〈·|·〉, | · |, BR; f ∈ C([0, 1]× Rn,Rn)

Thm. If ∃R > 0 :
either

〈u|f(t, u)〉 ≥ 0, ∀ (t, u) ∈ [0, 1]× ∂BR,
or

〈u|f(t, u)〉 ≤ 0, ∀ (t, u) ∈ [0, 1]× ∂BR,
then

x′ = f(t, x), x(0) = x(1)

has at least one solution taking values in BR

equivalent statements : τ = 1− t

nonlinear version of the linear result :

Prop. ∀λ ∈ R \ {0}, ∀ e ∈ C([0, T ],Rn)
x′ = λx+ e(t), x(0) = x(1) has a solution
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References

special case (not mentioned !) of Theorem 3.2 in M.A.

KRASNOSEL’SKII, The Operator of Translation along the Trajectories

of Differential Equations, Moscow, 1966
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Krasnosel’skii’s theorem

Thm. If ∃C, bounded open convex set, Φi ∈ C1(Rn,R)

(i = 1, . . . , r) : C = {u ∈ Rn : Φi(u) ≤ 0 (i = 1, . . . , r)},
Φi(u) = 0 for some u ∈ ∂C ⇒ ∇Φi(u) 6= 0, and

either

〈∇Φi(u)|f(t, u)〉 ≥ 0, ∀ (t, u) ∈ [0, 1]× ∂C, ∀ i ∈ α(u),
or

〈∇Φi(u)|f(t, u)〉 ≤ 0, ∀ (t, u) ∈ [0, 1]× ∂C, ∀ i ∈ α(u),
where

α(u) := {i ∈ {1, . . . , r} : Φi(u) = 0}
then

x′ = f(t, x), x(0) = x(1)

has at least one solution taking values in C

first existence thm : C = BR, r = 1, Φ1(u) =
1
2
(|u|2 − R2)
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Gustafson-Schmitt’s theorem

C open convex neighborhood of 0 in Rn

∀u ∈ ∂C, ∃ ν(u) ∈ Rn \ {0} : 〈ν(u)|u〉 > 0 and

C ⊂ {v ∈ Rn : 〈ν(u)|v − u〉 < 0}

ν : ∂C → Rn \ {0} : outer normal field on ∂C
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Gustafson-Schmitt’s theorem

C open convex neighborhood of 0 in Rn

∀u ∈ ∂C, ∃ ν(u) ∈ Rn \ {0} : 〈ν(u)|u〉 > 0 and

C ⊂ {v ∈ Rn : 〈ν(u)|v − u〉 < 0}

ν : ∂C → Rn \ {0} : outer normal field on ∂C

Gustafson-Schmitt’s thm. If ∃C, bounded convex open

neighborhood of 0 in Rn, and ν, outer normal field on ∂C :

either

〈ν(u)|f(t, u) > 0, ∀ (t, u) ∈ [0, 1]× ∂C
or

〈ν(u)|f(t, u) < 0, ∀ (t, u) ∈ [0, 1]× ∂C,
then

x′ = f(t, x), x(0) = x(1)
has at least one solution taking values in C

Proc. Amer. Math. Soc. 42 (1974), 161–166
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Comparison of the results

KRASNOSEL’SKII’S monograph not quoted by GUSTAFSON-SCHMITT

special case C = BR explicitely mentioned by

GUSTAFSON-SCHMITT
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Comparison of the results

KRASNOSEL’SKII’S monograph not quoted by GUSTAFSON-SCHMITT

special case C = BR explicitely mentioned by

GUSTAFSON-SCHMITT

J.M., Diford 74 (Stará Lesná 1974), I, 37–60 :

connection Krasnosel’skii–Gustafson-Schmitt explicited

extension of Gustafson-Schmitt’s thm to weak inequalities

Krasnosel’skii’s thm special case of extended Gustafson-Schmitt’s

thm
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Comparison of the results

KRASNOSEL’SKII’S monograph not quoted by GUSTAFSON-SCHMITT

special case C = BR explicitely mentioned by

GUSTAFSON-SCHMITT

J.M., Diford 74 (Stará Lesná 1974), I, 37–60 :

connection Krasnosel’skii–Gustafson-Schmitt explicited

extension of Gustafson-Schmitt’s thm to weak inequalities

Krasnosel’skii’s thm special case of extended Gustafson-Schmitt’s

thm

several generalizations of Gustafson-Schmitt’s thm in

J.M., Diford 74

GAINES-J.M., Coincidence Degree and Nonlinear Differential

Equations, Springer, 1977

Systems of ordinary differential equations with nonlocal boundary conditions – p.11/??



Nonlocal terminal BVP

h : [0, 1] → R nondecreasing,
∫ 1

0
dh(s) = 1,

h(0) < h(α) for some α ∈ (0, 1)

Thm. If ∃C, open, bounded, convex neighborhood of 0 in Rn

and ν, outer normal field on ∂C :

〈ν(u)|f(t, u)〉 ≥ 0, ∀ (t, u) ∈ [0, 1]× ∂C,
then

x′ = f(t, x), x(1) =
∫ 1

0
dh(s)x(s)

has at least one solution taking values in C

Systems of ordinary differential equations with nonlocal boundary conditions – p.12/??



Nonlocal terminal BVP

h : [0, 1] → R nondecreasing,
∫ 1

0
dh(s) = 1,

h(0) < h(α) for some α ∈ (0, 1)

Thm. If ∃C, open, bounded, convex neighborhood of 0 in Rn

and ν, outer normal field on ∂C :

〈ν(u)|f(t, u)〉 ≥ 0, ∀ (t, u) ∈ [0, 1]× ∂C,
then

x′ = f(t, x), x(1) =
∫ 1

0
dh(s)x(s)

has at least one solution taking values in C

J.M.-K. SZYMAŃSKA-DȨBOWSKA, J. Nonlin. Convex Anal. 18

(2017), 149–160 (more general versions are given there)

special case : multipoint boundary conditions
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Nonlocal initial BVP

h : [0, 1] → R non decreasing,
∫ 1

0
dh(s) = 1,

h(α) < h(1) for some α ∈ (0, 1)

Thm. If ∃C, open, bounded, convex neighborhood of 0 in Rn

and ν, outer normal field on ∂C :

〈ν(u)|f(t, u)〉 ≤ 0, ∀ (t, u) ∈ [0, 1]× ∂C,
then

x′ = f(t, x), x(0) =
∫ 1

0
dh(s)x(s)

has at least one solution taking values in C
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Nonlocal initial BVP

h : [0, 1] → R non decreasing,
∫ 1

0
dh(s) = 1,

h(α) < h(1) for some α ∈ (0, 1)

Thm. If ∃C, open, bounded, convex neighborhood of 0 in Rn

and ν, outer normal field on ∂C :

〈ν(u)|f(t, u)〉 ≤ 0, ∀ (t, u) ∈ [0, 1]× ∂C,
then

x′ = f(t, x), x(0) =
∫ 1

0
dh(s)x(s)

has at least one solution taking values in C

J.M.-K. SZYMAŃSKA-DȨBOWSKA, J. Nonlin. Convex Anal. 18

(2017), 149–160 (more general versions are given there)

special case : multipoint boundary conditions
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Special case of a ball

Cor. If h : [0, 1] → R is nondecreasing,
∫ 1

0
dh(s) = 1,

h(0) < h(α) for some α ∈ (0, 1), and if

∃R > 0 : 〈u|f(t, u)〉 ≥ 0, ∀ (t, u) ∈ [0, 1]× ∂BR,

then

x′ = f(t, x), x(1) =
∫ 1

0
dh(s)x(s)

has at least one solution taking values in BR.
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Special case of a ball

Cor. If h : [0, 1] → R is nondecreasing,
∫ 1

0
dh(s) = 1,

h(0) < h(α) for some α ∈ (0, 1), and if

∃R > 0 : 〈u|f(t, u)〉 ≥ 0, ∀ (t, u) ∈ [0, 1]× ∂BR,

then

x′ = f(t, x), x(1) =
∫ 1

0
dh(s)x(s)

has at least one solution taking values in BR.

Cor. If h : [0, 1] → R is nondecreasing,
∫ 1

0
dh(s) = 1,

h(α) < h(1) for some α ∈ (0, 1), and if

∃R > 0 : 〈u|f(t, u)〉 ≤ 0, ∀ (t, u) ∈ [0, 1]× ∂BR,
then

x′ = f(t, x), x(0) =
∫ 1

0
dh(s)x(s)

has at least one solution taking values in BR
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Remarks, questions and strategy

in J.M.–S-D’s thms, the sense of inequality for 〈u|f(t, u)〉 depends

on the BC, in contrast with the periodic case

however ∀λ ∈ R \ {0} , x′ = λx+ e(t),

x(1) = 1
2
[x(1/2) + x(0)] or x(0) = 1

2
[x(1/2) + x(1)]

has a solution ∀ e ∈ C([0, 1],Rn)

can we have existence with the opposite sign ?
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Remarks, questions and strategy

in J.M.–S-D’s thms, the sense of inequality for 〈u|f(t, u)〉 depends

on the BC, in contrast with the periodic case

however ∀λ ∈ R \ {0} , x′ = λx+ e(t),

x(1) = 1
2
[x(1/2) + x(0)] or x(0) = 1

2
[x(1/2) + x(1)]

has a solution ∀ e ∈ C([0, 1],Rn)

can we have existence with the opposite sign ?

we construct counterexamples to show the answer is no

2-dimensional eigenvalue problems z′ = λz with 3-point BC

use Fredholm alternative to obtain forcing terms e(t) :

z′ = λz + e(t) + BC has no solution for λ eigenvalue

show that this non-homogeneous problem written as a

2-dimensional system x′ = f(t, x) satisfies the conditions of

the J.M.–S-D’s corollaries with opposite signs for 〈u|f(t, u)〉

Systems of ordinary differential equations with nonlocal boundary conditions – p.15/??



Eigenvalue problems

λ ∈ C, z : [0, 1] → C

z′ = λz, z(1) = 1
2
[z(0) + z(1/2)]

eigenvalues : 2k(2πi), − log 4 + (2k + 1)(2πi) (k ∈ Z)

all contained in the left half plane and imaginary axis
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Eigenvalue problems

λ ∈ C, z : [0, 1] → C

z′ = λz, z(1) = 1
2
[z(0) + z(1/2)]

eigenvalues : 2k(2πi), − log 4 + (2k + 1)(2πi) (k ∈ Z)

all contained in the left half plane and imaginary axis

z′ = λz, z(0) = 1
2
[z(1/2) + z(1)]

eigenvalues : 2k(2πi), log 4 + (2k + 1)(2πi) (k ∈ Z)

all contained in the right half plane and imaginary axis

all complex, except 0
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Eigenvalue problems

λ ∈ C, z : [0, 1] → C

z′ = λz, z(1) = 1
2
[z(0) + z(1/2)]

eigenvalues : 2k(2πi), − log 4 + (2k + 1)(2πi) (k ∈ Z)

all contained in the left half plane and imaginary axis

z′ = λz, z(0) = 1
2
[z(1/2) + z(1)]

eigenvalues : 2k(2πi), log 4 + (2k + 1)(2πi) (k ∈ Z)

all contained in the right half plane and imaginary axis

all complex, except 0

Rem. z′ = λz, z(0) = z(1) has the eigenvalues

k(2πi), (k ∈ Z)
Half of those eigenvalues move to ℜz = log 4 (resp.

ℜz = − log 4 ) for the three-point BC
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Fredholm alternative

prop. λ is an eigenvalue of

z′ = λz, z(1) = 1
2
[z(0) + z(1/2)]

(resp. z′(t) = λz(t), z(0) = 1
2
[z(1/2) + z(1)])

⇔ ∃ eT ∈ C([0, 1],C) (resp. ∃ eI ∈ C([0, 1],C)) :

z′(t) = λz(t) + eT (t), z(1) =
1
2
[z(0) + z(1/2)]

(resp. z′(t) = λz(t) + eI(t), z(0) =
1
2
[z(1/2) + z(1)])

has no solution
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Fredholm alternative

prop. λ is an eigenvalue of

z′ = λz, z(1) = 1
2
[z(0) + z(1/2)]

(resp. z′(t) = λz(t), z(0) = 1
2
[z(1/2) + z(1)])

⇔ ∃ eT ∈ C([0, 1],C) (resp. ∃ eI ∈ C([0, 1],C)) :

z′(t) = λz(t) + eT (t), z(1) =
1
2
[z(0) + z(1/2)]

(resp. z′(t) = λz(t) + eI(t), z(0) =
1
2
[z(1/2) + z(1)])

has no solution

proof. (1st case; 2nd analogous)

Lz := z′ − z = e(t), z(1) = 1
2
[z(0) + z(1/2)]

has a unique solution z = L−1e

L−1 : C([0, 1],C) → C([0, 1],C is compact

EV problem ⇔ z = (λ− 1)L−1z + L−1e

Riesz theory ⇒ Fredholm alternative holds
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Terminal type counterexample

eT ∈ C([0, 1],C) :

z′(t) = (− log 4 + 2πi)z(t) + eT (t), z(1) =
1
2
[z(0) + z(1/2)]

has no solution
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Terminal type counterexample

eT ∈ C([0, 1],C) :

z′(t) = (− log 4 + 2πi)z(t) + eT (t), z(1) =
1
2
[z(0) + z(1/2)]

has no solution

z(t) := x1(t) + ix2(t), eT (t) = eT,1(t) + ieT,2(t)

x′1(t) = −(log 4)x1(t)− 2πx2(t) + eT,1(t)

x′2(t) = 2πx1(t)− (log 4)x2(t) + hT,2(t)

x1(1) =
1
2
[x1(0) + x1(1/2)]

x2(1) =
1
2
[x2(0) + x2(1/2)]
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Terminal type counterexample

eT ∈ C([0, 1],C) :

z′(t) = (− log 4 + 2πi)z(t) + eT (t), z(1) =
1
2
[z(0) + z(1/2)]

has no solution

z(t) := x1(t) + ix2(t), eT (t) = eT,1(t) + ieT,2(t)

x′1(t) = −(log 4)x1(t)− 2πx2(t) + eT,1(t)

x′2(t) = 2πx1(t)− (log 4)x2(t) + hT,2(t)

x1(1) =
1
2
[x1(0) + x1(1/2)]

x2(1) =
1
2
[x2(0) + x2(1/2)]

f(t, u) :=
(

−(log 4)u1 − 2πu2 + eT,1(t), 2πu1 − (log 4)u2 + eT,2(t)
)

〈u|f(t, u)〉 = −(log 4)(u21 + u22) + u1eT,1(t) + u2eT,2(t)

≤ −(log 4)|u|2 + |eT (t)|||u| < 0 when |u| ≥ R ≫ 0
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Initial type counterexample

eI ∈ C([0, 1],C) :

z′(t) = (log 4 + 2πi)z(t) + eI(t), z(1) =
1
2
[z(0) + z(1/2)]

has no solution
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Initial type counterexample

eI ∈ C([0, 1],C) :

z′(t) = (log 4 + 2πi)z(t) + eI(t), z(1) =
1
2
[z(0) + z(1/2)]

has no solution

z(t) := x1(t) + ix2(t), eI(t) = eI,1(t) + ieI,2(t)

x′1(t) = −(log 4)x1(t)− 2πx2(t) + eI,1(t)

x′2(t) = 2πx1(t)− (log 4)x2(t) + eI,2(t)

x1(1) =
1
2
[x1(0) + x1(1/2)]

x2(1) =
1
2
[x2(0) + x2(1/2)]
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Initial type counterexample

eI ∈ C([0, 1],C) :

z′(t) = (log 4 + 2πi)z(t) + eI(t), z(1) =
1
2
[z(0) + z(1/2)]

has no solution

z(t) := x1(t) + ix2(t), eI(t) = eI,1(t) + ieI,2(t)

x′1(t) = −(log 4)x1(t)− 2πx2(t) + eI,1(t)

x′2(t) = 2πx1(t)− (log 4)x2(t) + eI,2(t)

x1(1) =
1
2
[x1(0) + x1(1/2)]

x2(1) =
1
2
[x2(0) + x2(1/2)]

f(t, u) :=
(

(log 4)u1 − 2πu2 + eI,1(t), 2πu1 − (log 4)u2 + eI,2(t)
)

〈u|f(t, u)〉 = (log 4)(u21 + u22) + u1eI,1(t) + u2eI,2(t)

≥ (log 4)|u|2 − |eI ||u| > 0 when |u| ≥ R ≫ 0
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Comments

the symmetry-breaking with respect to reflection on imaginary axis

for the spectra of the 3-point BVP explains the difference in

existence conditions with respect to periodic conditions

despite of the same real spectrum {0} for the three problems, the

presence of the complex spectrum in the left- or the right half plane

influences like a ghost the existence conditions for solutions of the

real nonlinear systems
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Comments

the symmetry-breaking with respect to reflection on imaginary axis

for the spectra of the 3-point BVP explains the difference in

existence conditions with respect to periodic conditions

despite of the same real spectrum {0} for the three problems, the

presence of the complex spectrum in the left- or the right half plane

influences like a ghost the existence conditions for solutions of the

real nonlinear systems

maybe extra conditions upon f could provide existence results

with the sign conditions of the counterexamples

strictly speaking, our counterexamples do not cover the case of

n = 1 or even of n odd. For n = 3, add the equations

x′3 = −(log 4)x3 +
log 4
4

(x1 + x2), x3(1) =
1
2
[x3(0) + x3(1/2)]

or

x′3 = (log 4)x3 +
log 4
4

(x1 + x2), x3(0) =
1
2
[x3(1/2) + x3(1)]
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Sharpness of the periodic case

z′ = 2πiz + e2πit, z(0) = z(1)

⇔ (e−2πitz)′ = 1, z(0) = z(1) has no solution

z = x1 + ix2 ⇒ x′1 = −2πx2 + cos(2πt)

x′2 = 2πx1 + sin(2πt), x1(0) = x1(1), x2(0) = x2(1)
has no solution
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Sharpness of the periodic case

z′ = 2πiz + e2πit, z(0) = z(1)

⇔ (e−2πitz)′ = 1, z(0) = z(1) has no solution

z = x1 + ix2 ⇒ x′1 = −2πx2 + cos(2πt)

x′2 = 2πx1 + sin(2πt), x1(0) = x1(1), x2(0) = x2(1)
has no solution

f1(t, x1, x2) = −2πx2 + cos(2πt)
f2(t, x1, x2) = 2πx1 + cos(2πit)
x = (x1, x2), f(t, x) = (f1(t, x1, x2), f2(t, x1, x2))

〈x, f(t, x)〉 = cos(2πt)x1 + sin(2πt)x2

x = R[cos(2πθ), sin(2πθ)] ∈ ∂BR :
〈x, f(t, x)〉 = R cos[2π(t− θ)] (t, θ ∈ [0, 1])
takes both positive and negative values

Systems of ordinary differential equations with nonlocal boundary conditions – p.22/??



Nonlocal BVP for 2nd order systems - 1

g : [0, 1]×Rn × Rn → Rn continuous, h : [0, 1] → R non

decreasing,
∫ 1

0
dh = 1, h(α) > h(0) for some α ∈ (0, 1)

Thm. If ∃C , open, bounded, convex neighborhood of 0 in Rn

and ν, outer normal field on ∂C :

〈ν(v)|g(t, u, v)〉 ≥ 0, ∀ (t, u, v) ∈ [0, 1]× C × ∂C ,

then

x′′ = g(t, x, x′), x(0) = 0, x′(1) =
∫ 1

0
dh(s)x′(s) (∗)

has at least one solution with x and x′ taking values in C
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Nonlocal BVP for 2nd order systems - 1

g : [0, 1]×Rn × Rn → Rn continuous, h : [0, 1] → R non

decreasing,
∫ 1

0
dh = 1, h(α) > h(0) for some α ∈ (0, 1)

Thm. If ∃C , open, bounded, convex neighborhood of 0 in Rn

and ν, outer normal field on ∂C :

〈ν(v)|g(t, u, v)〉 ≥ 0, ∀ (t, u, v) ∈ [0, 1]× C × ∂C ,

then

x′′ = g(t, x, x′), x(0) = 0, x′(1) =
∫ 1

0
dh(s)x′(s) (∗)

has at least one solution with x and x′ taking values in C

Corr. If ∃R > 0 :
〈v|g(t, u, v)〉 ≥ 0, ∀ (t, u, v) ∈ [0, 1]× BR × ∂BR, then

(*) has at least one solution with x and x′ taking values in BR

J.M.-SZYMAŃSKA-DȨBOWSKA, Proc. AMS 145 (2017), 2023–2032

Systems of ordinary differential equations with nonlocal boundary conditions – p.23/??



Nonlocal BVP for 2nd order systems - 2

similar thm and corollary, with the same sign for 〈v, g(t, u, v)〉,

for the boundary conditions x(0) = 0, x′(0) =
∫ 1

0
dh(s)x′(s)

when h(α) < h(1) for some α ∈ (0, 1)

adaptations of 1st order counterexamples show that both existence

conclusions need not be true when 〈v, g(t, u, v)〉 ≤ 0
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similar thm and corollary, with the same sign for 〈v, g(t, u, v)〉,

for the boundary conditions x(0) = 0, x′(0) =
∫ 1

0
dh(s)x′(s)

when h(α) < h(1) for some α ∈ (0, 1)

adaptations of 1st order counterexamples show that both existence

conclusions need not be true when 〈v, g(t, u, v)〉 ≤ 0

Cor. If ∃R > 0 : either

〈v|g(t, u, v)〉 ≥ 0, ∀ (t, u, v) ∈ [0, 1]×BR × ∂BR

or 〈v|g(t, u, v)〉 ≤ 0, ∀ (t, u, v) ∈ [0, 1]× BR × ∂BR,

then x′′ = g(t, x, x′), x(0) = 0, x′(0) = x′(1)

has at least one solution with x and x′ taking values in BR

proof. a special case of both problems above

adaptation of 1st order counterexample show that the result is sharp
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Thank you for your kind attention !
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