Fuzzy Stochastic Differential Equations: A Tool for Stochastic Systems with Imprecise Values

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

> Differential Equations and Applications, Brno. Czech Republic. September 4–7. 2017

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

 (Ω,\mathcal{A},P) - a complete probability space. $\{\mathcal{A}_t\}_{t\in[0,T]}$ - a filtration satisfying usual hypotheses.

$$dx(t) = f(t, x(t))dt + g(t, x(t))dB(t), \quad x(0) = x_0$$
$$x(t) = x_0 + \int_0^t f(s, x(s))ds + \int_0^t g(s, x(s))dB(s), \quad t \in [0, T],$$
$$f, g: [0, T] \times \mathbf{R}^d \to \mathbf{R}^d,$$
$$x_0 \text{ is an } \mathcal{A}_0\text{-measurable random variable,}$$
$$\{B(t), t \in [0, T]\} \text{ - Brownian motion.}$$

Solution: a stochastic process $x: [0,T] \times \Omega \to \mathbf{R}^d$.

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

Image: A math a math

Applications: biology, financial mathematics, control theory, physics, economics, mechanical and electrical engineering.

Monographs (among others):

- 1. L. Arnold, Stochastic Differential Equations: Theory and Applications, John Willey & Sons, New York 1974.
- 2. I.I. Gihman, A.V. Skorohod, Stochastic Differential Equations, Springer, Berlin 1972.
- 3. N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Kodansha, Tokyo 1981.
- 4. H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge Univ. Press, Cambridge 1990.
- 5. X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing, Chichester 1997.

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

Lotfi A. Zadeh 1965:

A **fuzzy set** (class) u in \mathbf{R}^d is characterized by a membership function $u: \mathbf{R}^d \to [0, 1]$ which associates with each point in \mathbf{R}^d a real number in the interval [0, 1].

The value u(x) represents the grade of membership of x in u.

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

Example: the class "Hot water"

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

Fuzzy sets

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

/⊒ > < ∃ >

Notation

$$\begin{aligned} \mathcal{F}(\mathbf{R}^d) &:= & \Big\{ u: \mathbf{R}^d \to [0,1] \mid [u]_\alpha \text{ is a nonempty, convex} \\ & \text{ and compact subset of } \mathbf{R}^d \text{ for } \alpha \in [0,1] \Big\}. \end{aligned}$$

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

メロト メポト メヨト メヨト

Fuzzy Stochastic Differential Equations (FSDEs)

 $dx(t) = f(t, x(t))dt + g(t, x(t))dB(t), \quad x(0) = x_0$

 $f,g: [0,T] \times \mathcal{F}(\mathbf{R}^d) \to \mathcal{F}(\mathbf{R}^d)$ - fuzzy coefficients, $x_0: \Omega \to \mathcal{F}(\mathbf{R}^d)$ is an \mathcal{A}_0 -measurable fuzzy random variable, $\{B(t), t \in [0,T]\}$ - real-valued Brownian motion.

Solution: a fuzzy stochastic process $x : [0,T] \times \Omega \rightarrow \mathcal{F}(\mathbf{R}^d)$.

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

イロン 不同 とくほう イロン

Integral form of FSDEs

$$x(t) = x_0 + \int_0^t f(s, x(s))ds + \int_0^t g(s, x(s))dB(s), \quad t \in [0, T],$$

- addition of fuzzy sets,
- fuzzy stochastic Lebesgue integral,
- fuzzy stochastic Itô integral.

Addition of fuzzy sets $u, v \in \mathcal{F}(\mathbf{R}^d)$:

u+v is a fuzzy set in $\mathcal{F}(\mathbf{R}^d)$ such that for every $\alpha \in [0,1]$

 $[u+v]_{\alpha} = [u]_{\alpha} + [v]_{\alpha} \quad \leftarrow \quad \mathsf{Minkowski's \ sum \ of \ sets.}$

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

(日) (同) (三) (

Fuzzy stochastic integrals

 $a\colon [0,T]\times\Omega\to \mathcal{F}(\mathbf{R}^d)$ - measurable, adapted and integrally bounded fuzzy stochastic process

$$\begin{split} &\int_0^t (s,\omega) ds \text{ - fuzzy stochastic Lebesgue integral,} \\ &\left[\int_0^t a(s,\omega) ds\right]_\alpha = \int_0^t [a(s,\omega)]_\alpha ds \ \leftarrow \text{Aumann's integral.} \end{split}$$

Theorem 1 (MTM 2009, 2012).

The mapping $[0,T] \times \Omega \ni (t,\omega) \mapsto \int_0^t a(s,\omega) ds \in \mathcal{F}(\mathbf{R}^d)$ is a measurable, adapted and integrally bounded fuzzy stochastic process. Its trajectories are continuous.

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

(日) (同) (三) (

 \boldsymbol{b} - fuzzy stochastic process,

B - real-valued Brownian motion,

$$\int_0^t b(s) dB(s)$$
 - fuzzy stochastic ltô integral

Theorem 2 (Ogura & Zhang 2010).

It is not possible to define a fuzzy stochastic Itô integral $\left(\int_0^t b(s)dB(s)\right)(\omega)$ in such a way that it is a fuzzy (and non-crisp) stochastic process.

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

$$x(t) = \underbrace{x_0}_{\text{fuzzy-valued}} + \underbrace{\int_0^t f(s, x(s)) ds}_{\text{fuzzy-valued}} + \underbrace{\int_0^t g(s, x(s)) dB(s)}_{\text{crisp}},$$

$$\begin{split} f \colon [0,T] \times \Omega \times \mathcal{F}(\mathbf{R}^d) &\to \mathcal{F}(\mathbf{R}^d), \\ g \colon [0,T] \times \Omega \times \mathcal{F}(\mathbf{R}^d) \to \mathbf{R}^d, \\ x_0 \colon \Omega \to \mathcal{F}(\mathbf{R}^d) \text{ is a fuzzy random variable,} \\ B\text{- real-valued Brownian motion.} \end{split}$$

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

$$dx(t) = f(t, x(t))dt + \langle g(t, x(t))dB(t) \rangle, \quad x(0) = x_0$$
(1)
$$x(t) = x_0 + \int_0^t f(s, x(s))ds + \langle \int_0^t g(s, x(s))dB(s) \rangle, \quad t \in [0, T],$$

Definition 3.

By a solution to Eq. (1) we mean a measurable, adapted and integrally bounded fuzzy stochastic process $x \colon [0,T] \times \Omega \to \mathcal{F}(\mathbf{R}^d)$ with continuous trajectories and such that *P*-a.e.

$$x(t) = x_0 + \int_0^t f(s, x(s))ds + \left\langle \int_0^t g(s, x(s))dB(s) \right\rangle, \quad t \in [0, T].$$

The solution x is unique if P-a.e. $x(t) = y(t), t \in [0,T]$, where $y: [0,T] \times \Omega \rightarrow \mathcal{F}(\mathbf{R}^d)$ is any other solution to Eq. (1).

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

Example:
$$x(t) = x_0 + \int_0^t 2sx(s)ds + \left\langle \int_0^t 4dB(s) \right\rangle$$
.
Solution: $x(t) = e^{t^2} \cdot x_0 + \left\langle 4e^{t^2} \int_0^t e^{-s^2} dB(s) \right\rangle$.
For a simulation: $[x_0(\omega)]_0 = [10, 20], [x(t, \omega)]_0 = [L_0(t, \omega), U_0(t, \omega)]$

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

Notation

$$\operatorname{Fuzz}(u) := \operatorname{diam}([u]_0) \text{ for } u \in \mathcal{F}(\mathbf{R}^d).$$

Proposition 4 (MTM 2013).

Assume that $x : [0,T] \times \Omega \to \mathcal{F}(\mathbf{R}^d)$ is a solution to Eq. (1). Then P-a.a. the functions $t \mapsto \operatorname{Fuzz}(x(t,\omega))$ are nondecreasing.

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

Image: A math a math

Example: $x(t) + \int_0^t (-2)sx(s)ds + \left\langle \int_0^t (-4)dB(s) \right\rangle = x_0.$ Solution: $x(t) = \left[\cosh(t^2) \cdot x_0 \ominus \left(-\sinh(t^2) \cdot x_0 \right) \right] + \left\langle 4e^{t^2} \int_0^t e^{-s^2} dB(s) \right\rangle.$ For a simulation: $[x_0(\omega)]_0 = [50, 150], [x(t, \omega)]_0 = [L_0(t, \omega), U_0(t, \omega)].$

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

Consider

$$x(t) + \int_0^t (-1)f(s, x(s))ds + \left\langle \int_0^t (-1)g(s, x(s))dB(s) \right\rangle = x_0.$$
 (2)

Proposition 5 (MTM 2014).

Assume that $x : [0,T] \times \Omega \to \mathcal{F}(\mathbf{R}^d)$ is a solution to Eq. (2). Then *P*-a.a. the functions $t \mapsto \operatorname{Fuzz}(x(t,\omega))$ are nonincreasing.

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

Image: A math a math

Bipartite fuzzy stochastic differential equations

$$\begin{aligned} x(t) &+ \int_0^t (-1)f_1(s, x(s))ds + \left\langle \int_0^t (-1)g_1(s, x(s))dB_1(s) \right\rangle \\ &= x_0 + \int_0^t f_2(s, x(s))ds + \left\langle \int_0^t g_2(s, x(s))dB_2(s) \right\rangle. \end{aligned}$$

$$\begin{aligned} x(t) &+ \int_0^t (-1)f_1(s, x(s))ds \\ &= x_0 + \int_0^t f_2(s, x(s))ds + \left\langle \int_0^t g(s, x(s))dB(s) \right\rangle.$$
(3)

 $g = (g_1, g_2)$ $B = (B_1, B_2)'.$

Marek T. Malinowski

 <</td>
 <</td>

Assumptions:

(a1) $f_k(\cdot, \cdot, \cdot) \colon [0, T] \times \Omega \times \mathcal{F}(\mathbf{R}^d) \to \mathcal{F}(\mathbf{R}^d)$, k = 1, 2, $g(\cdot, \cdot, \cdot) \colon [0, T] \times \Omega \times \mathcal{F}(\mathbf{R}^d) \to \mathbf{R}^d$ are jointly measurable mappings,

(a2) there exists a constant L > 0 such that $\forall (t, \omega) \in [0, T] \times \Omega \quad \forall u, v \in \mathcal{F}(\mathbf{R}^d)$

 $\max \bigl\{\! D\bigl(\!f_k(t,\omega,u),f_k(t,\omega,v)\bigr)\!, \|g(t,\omega,u)-g(t,\omega,v)\|\bigr\} \!\leqslant\! LD(u,v),$

(a3) there exists a constant C>0 such that $\forall (t,\omega)\in [0,T]\times \Omega$

 $\max\left\{D\big(f_k(t,\omega,\langle 0\rangle),\langle 0\rangle\big),\|g(t,\omega,\langle 0\rangle)\|\right\}\leqslant C.$

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

< ロ > < 同 > < 回 > < 回

Theorem 6 (MTM 2016).

Let assumptions (a1)-(a3) be satisfied. Suppose that the sequence $\{x_n\}_{n=0}^{\infty}$ of the fuzzy stochastic processes $x_n \colon [0, \tilde{T}] \times \Omega \to \mathcal{F}(\mathbb{R})$, where $\tilde{T} \leq T$, described as: $x_0(t) = x_0$ and for n = 1, 2, ...

$$x_{n}(t) = \left(\left[x_{0} + \int_{0}^{t} f_{2}(s, x_{n-1}(s)) ds \right] \ominus \int_{0}^{t} (-1) f_{1}(s, x_{n-1}(s)) ds \right) \\ + \left\langle \int_{0}^{t} g(s, x_{n-1}(s)) dB(s) \right\rangle$$

is well defined. Then Eq. (3) possesses a unique local solution.

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

Image: A math a math

Assumptions:

(b1) $f_k(\cdot, \cdot, \cdot) \colon [0, T] \times \Omega \times \mathcal{F}_c(\mathbf{R}^d) \to \mathcal{F}_c(\mathbf{R}^d)$, k = 1, 2, $g(\cdot, \cdot, \cdot) \colon [0, T] \times \Omega \times \mathcal{F}_c(\mathbf{R}^d) \to \mathbf{R}^d$ are jointly measurable mappings,

(b2)
$$\forall (t,\omega) \in [0,T] \times \Omega \quad \forall u,v \in \mathcal{F}_c(\mathbf{R}^d)$$

 $\max\{\!D^2\big(\!f_k(t,\omega,u),f_k(t,\omega,v)\!\big)\!,\|g(t,\omega,u)-g(t,\omega,v)\|^2\}\!\leqslant\!\xi(D^2(u,v)),$

where $\xi \colon \mathbf{R}_+ \to \mathbf{R}_+$ is continuous, concave, nondecreasing, $\xi(0) = 0$, $\xi(a) > 0$ for a > 0, and $\int_{0+} \frac{da}{\xi(a)} = \infty$,

(b3) there exists a constant C>0 such that $\forall (t,\omega)\in [0,T]\times \Omega$

$$\max\left\{D^2(f_k(t,\omega,\langle 0\rangle),\langle 0\rangle), \|g(t,\omega,\langle 0\rangle)\|^2\right\} \leqslant C.$$

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

Theorem 7 (MTM 2017).

Let assumptions (b1)-(b3) be satisfied. Suppose that there exists $\tilde{T}\in(0,T]$ such that

$$\int_{ au}^t f_2(s,x(s)) ds \ominus \int_{ au}^t f_1(s,x(s)) ds$$

is well defined for all $\tau, t \in [0, \tilde{T}]$ and for every fuzzy stochastic process x. Then Eq. (3) possesses a unique local solution.

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

Image: A math a math

References

- E.J. Jung, J.H. Kim (2003): On set-valued stochastic integrals. Stoch. Anal. Appl. 21, 401–418.
- M.T. Malinowski (2009): On random fuzzy differential equations. Fuzzy Sets Syst. 160, 3152–3165.
- M.T. Malinowski (2010): Existence theorems for solutions to random fuzzy differential equations. Nonlinear Anal. Theory, Meth. & Appl. 73, 1515–1532.
- 4. M.T. Malinowski (2012): Strong solutions to stochastic fuzzy differential equations of Itô type. **Math. Comput. Modelling** 55, 918–928.
- 5. M.T. Malinowski (2012): Itô type stochastic fuzzy differential equations with delay. **Syst. Control Lett.** 61, 692–701.
- M.T. Malinowski (2013): Some properties of strong solutions to stochastic fuzzy differential equations. Inform. Sci. 252, 62–80.

Marek T. Malinowski

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

References

- M.T. Malinowski (2015): Set-valued and fuzzy stochastic differential equations in M-type 2 Banach spaces, Tôhoku Math. J. 67, 349–381.
- M.T. Malinowski, R.P. Agarwal (2015): On solutions to set-valued and fuzzy stochastic differential equations. J. Franklin Inst., 352, 3014–3043.
- M.T. Malinowski (2015): Fuzzy and set-valued stochastic differential equations with local Lipschitz condition. IEEE Trans. Fuzzy Syst. 23, 1891–1898.
- M.T. Malinowski (2016): Stochastic fuzzy differential equations of a nonincreasing type. Commun. Nonlinear Sci. Numer. Simulat. 33, 99-117.
- M.T. Malinowski (2016): Bipartite fuzzy stochastic differential equations with global Lipschitz condition. Math. Prob. Eng. vol. 2016, 13 pages.
- Y. Ogura, J. Zhang (2010): On stochastic differential equations with fuzzy set coefficients. In: Soft Methods for Handling Variability and Imprecision, ASC 48, (D. Dubois et al., Eds.), Springer, Berlin.

Institute of Mathematics, Cracow University of Technology, Kraków, Poland

Thank you for your attention!

Marek T. Malinowski