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Introduction
Lower and upper solutions; critical points; degree estimations

Non-existence, existence and multiplicity
References

Introduction

Let Ω be a bounded domain in RN (N ≥ 2) with boundary ∂Ω of class C 2. M(u) + λFu(x , u, v) = 0, x ∈ Ω,
M(v) + λFv (x , u, v) = 0, x ∈ Ω,
u|∂Ω = 0 = v |∂Ω,

(1)

with F : Ω× R2 → R satisfying:

(HF ) (i) F (·, u, v) : Ω→ R is measurable for all (u, v) ∈ R2 and F (·, 0, 0) = 0;

(ii) F (x , ·, ·) : R2 → R is of class C 1 on R2 for a.e. x ∈ Ω;

(iii) for each ρ > 0 there is some αρ ∈ L∞(Ω) such that

|∇F (x , u, v)| ≤ αρ(x) for a.e. x ∈ Ω, ∀ (u, v) ∈ R2 with |(u, v)| ≤ ρ,

• By a solution of (1) we mean a couple of functions
(u, v) ∈W 2,p(Ω)×W 2,q(Ω) with some p, q > N, such that ‖∇u‖∞ < 1,
‖∇v‖∞ < 1, which satisfies the equations a.e. in Ω and vanishes on ∂Ω.
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Theorem 1.

Assume (HF ) and that

F (x , 0, v) = Fu(x , 0, v) = Fu(x , u, 0) = 0 and

F (x , u, 0) = Fv (x , u, 0) = Fv (x , 0, v) = 0, (2)

for a.e. x ∈ Ω and all (u, v) ∈ [0,∞)2.

If the following hold true:

(iv) ∃ R1 > 0 :

{
Fu(x , u, v) > (≥) 0
Fv (x , u, v) ≥ (>) 0

, for a.e. x ∈ Ω, ∀ u, v ∈ (0,R1);

(v) lim
|(u,v)|→0

F (x , u, v)

|(u, v)|2
= 0 uniformly with x ∈ Ω,

then there exists Λ > 0 s.t. for all λ > Λ problem (1) has at least two solutions
with each component nontrivial (and non-negative).
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Proof. Set F̃ (x , u, v) = F (x , u+, v+) (x ∈ Ω, u, v ∈ R) and consider M(u) + λF̃u(x , u, v) = 0, x ∈ Ω,

M(v) + λF̃v (x , u, v) = 0, x ∈ Ω,
u|∂Ω = 0 = v |∂Ω

(3)

• (u, v) solution for (3) ⇒ (u, v) has non-negative components and solves (1).
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K0 := {u ∈W 1,∞(Ω) : ‖∇u‖∞ ≤ 1, u|∂Ω = 0}

Ψ(u) =


∫

Ω

[1−
√

1− |∇u|2] for u ∈ K0

+∞ for u ∈ C (Ω) \ K0

∗ Ψ is convex and lower semicontinuous on C (Ω)

F̃(u, v) =

∫
Ω

F̃ (x , u, v)

∗ F̃ is of class C 1 on C (Ω)× C (Ω)

Daniela GURBAN West University of Timişoara
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Iλ(u, v) := Ψ(u) + Ψ(v)− λF̃(u, v), ∀(u, v) ∈ C (Ω)× C (Ω)

• (u, v) critical point of Iλ (in the sense of Szulkin) ⇒ (u, v) solution of (3)

• ∃ Λ > 0 s.t. ∀λ > Λ:

(a) Iλ has a negative minimum,

(b) Iλ has a positive value at a (mountain pass) critical point

⇒ Iλ has two nontrivial critical points; each such a critical point is a solution of
(3) having each component nontrivial.
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Example 2.

There exists Λ > 0 s.t., for all λ > Λ, the system M(u) + λuv2 = 0, x ∈ Ω,
M(v) + λu2v = 0, x ∈ Ω,
u|∂Ω = 0 = v |∂Ω

(4)

has at least two solutions with each component nontrivial and non-negative.
• take F (x , u, v) = u2v2/2
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More general: • F (x , u, v) = µ(|x |)up+1vq+1 under the hypothesis:

(H) The non-negative exponents p, q satisfy max{p, q} > 1 and the function
µ : [0,R]→ [0,∞) is continuous and µ(r) > 0 for all r ∈ (0,R]. M(u) + λµ(|x |)(p + 1)upvq+1 = 0, x ∈ Ω,

M(v) + λµ(|x |)(q + 1)up+1vq = 0, x ∈ Ω,
u|∂Ω = 0 = v |∂Ω

(5)

Theorem 1 ⇒ ∃ Λ > 0 s.t. ∀λ > Λ the system (5) has at least two solutions

with each component nontrivial (and non-negative).
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C. Bereanu, P.Jebelean, and P.J. Torres, J. Funct. Anal. 265 (2013)

In the case on a single equation in a ball:

M(u) + λµ(|x |)uα = 0 in B(R), u|∂B(R) = 0 (α > 1)

a sharper result holds true: there exists Λ > 0 s.t. it has zero, at least one or
at least two positive solutions according to λ ∈ (0,Λ), λ = Λ or λ > Λ.

• • r := |x | and u(x) = u(r), v(x) = v(r), the Dirichlet problem (5) in
Ω = B(R) reduces to the mixed boundary value problem:

[rN−1ϕ(u′)]′ + λrN−1µ(r)(p + 1)upvq+1 = 0,

[rN−1ϕ(v ′)]′ + λrN−1µ(r)(q + 1)up+1vq = 0,

u′(0) = u(R) = 0 = v(R) = v ′(0),

(6)

where
ϕ(y) =

y√
1− y2

(y ∈ R, |y | < 1).
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Lower and upper solutions

Consider the general system:
[rN−1ϕ(u′)]

′
+ rN−1f1(r , u, v) = 0,

[rN−1ϕ(v ′)]
′

+ rN−1f2(r , u, v) = 0,

u′(0) = u(R) = 0 = v(R) = v ′(0),

(7)

where f1, f2 : [0,R]× R2 → R are continuous.

By a solution of (7) we mean a couple of functions (u, v) ∈ C 1[0,R]× C 1[0,R]
with ||u′||∞ < 1, ||v ′||∞ < 1 and r 7→ rN−1ϕ(u′(r)), r 7→ rN−1ϕ(v ′(r)) of class
C 1 on [0,R], which satisfies problem (7). Here and below, we denote by ‖ · ‖∞
the usual sup-norm on C := C [0,R]. We say that u ∈ C is positive if u > 0 on
[0,R). By a positive solution of (7) we understand a solution (u, v) with both u
and v positive.
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A lower solution of (7) is a couple of functions (αu, αv ) ∈ C 1 × C 1, s.t.
‖α′u‖∞ < 1, ‖α′v‖∞ < 1, the mappings r 7→ rN−1ϕ(α′u(r)), r 7→ rN−1ϕ(α′v (r))
are of class C 1 on [0,R] and satisfies

[rN−1ϕ(α′u)]′ + rN−1f1(r , αu, αv ) ≥ 0,

[rN−1ϕ(α′v )]′ + rN−1f2(r , αu, αv ) ≥ 0,

αu(R) ≤ 0, αv (R) ≤ 0.

An upper solution (βu, βv ) ∈ C 1 × C 1 is defined by reversing the above
inequalities.
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• J1, J2 ⊂ R. In the terminology of [14], a function
f = f (r , s, t) : [0,R]× J1 × J2 → R is said to be quasi-monotone nondecreasing
with respect to t (resp. s) if for fixed r , s (resp. r , t) one has

f (r , s, t1) ≤ f (r , s, t2) as t1 ≤ t2 (resp. f (r , s1, t) ≤ f (r , s2, t) as s1 ≤ s2).

Proposition 2.1.

If (7) has a lower solution (αu, αv ) and an upper solution (βu, βv ) s.t.
αu(r) ≤ βu(r), αv (r) ≤ βv (r) for all r ∈ [0,R] and f1(r , s, t) (resp. f2(r , s, t)) is
quasi-monotone nondecreasing with respect to t (resp. s), then (7) has a
solution (u, v) s.t. αu(r) ≤ u(r) ≤ βu(r) and αv (r) ≤ v(r) ≤ βv (r) for all
r ∈ [0,R].
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C 1 := C 1[0,R] with ||u||1 = ||u||∞ + ||u′||∞
C 1 × C 1 with ||(u, v)|| = max{||u||∞, ||v ||∞}+ max{||u′||∞, ||v ′||∞}

C1
M = {(u, v) ∈ C 1 × C 1 : u′(0) = u(R) = 0 = v(R) = v ′(0)}

Nfi =the Nemytskii operator associated to fi (i = 1, 2), i.e.,

Nfi : C × C → C , Nfi (u, v) = fi (·, u(·), v(·)) (u, v ∈ C ),

S : C → C , Su(r) =
1

rN−1

∫ r

0

tN−1u(t)dt (r ∈ [0,R]), Su(0) = 0;

K : C → C 1, Ku(r) =

∫ R

r

u(t)dt (r ∈ [0,R]).
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Proposition 2.2.

A couple of functions (u, v) ∈ C1
M is a solution of (7) if and only if it is a fixed

point of the compact nonlinear operator

Nf : C1
M → C1

M , Nf =
(
K ◦ ϕ−1 ◦ S ◦ Nf1 ,K ◦ ϕ−1 ◦ S ◦ Nf2

)
.

In addition, any fixed point (u, v) of Nf satisfies

‖u′‖∞ < 1, ‖v ′‖∞ < 1, ‖u‖∞ < R, ‖v‖∞ < R, (8)

and
dLS [I −Nf ,Bρ, 0] = 1 for all ρ ≥ R + 1.

In particular, problem (7) has at least one solution in Bρ for all ρ ≥ R + 1.
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• When system (7) is potential:
[rN−1ϕ(u′)]′ = rN−1Fu(r , u, v),

[rN−1ϕ(v ′)]′ = rN−1Fv (r , u, v),

u′(0) = u(R) = 0 = v(R) = v ′(0),

(9)

with F = F (r , u, v) : [0,R]× R2 → R continuous, s.t. Fu and Fv exist and are
continuous on [0,R]× R2, then a variational approach is available:
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K0 = {u ∈W 1,∞[0,R] : ‖u′‖∞ ≤ 1, u(R) = 0}.

ψ(u) =


∫ R

0

rN−1[1−
√

1− u′2]dr for u ∈ K0

+∞ for u ∈ C \ K0,

Ψ(u, v) := ψ(u) + ψ(v), for all (u, v) ∈ C × C .

∗ Ψ is proper, convex and lower semicontinuous.

F(u, v) :=

∫ R

0

rN−1F (r , u, v), (u, v ∈ C )

∗ F is of class C 1 on C × C
I := Ψ + F
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Proposition 2.3.

If (u, v) ∈ C × C is a critical point of I (in the sense of Szulkin), then it is a
solution of system (9). Moreover, system (9) has a solution which is a minimum
point of I on C × C .

Lemma 3.

Assume that (7) has a lower solution (αu, αv ) and an upper solution (βu, βv )
s.t. αu(r) ≤ βu(r), αv (r) ≤ βv (r) for all r ∈ [0,R] and f1(r , s, t) (resp.
f2(r , s, t)) is quasi-monotone nondecreasing with respect to t (resp. s). Let

Aα,β := {(u, v) ∈ C1
M : αu ≤ u ≤ βu, αv ≤ v ≤ βv}.

Assume also that (7) has an unique solution (u0, v0) in Aα,β and there exists
ρ0 > 0 s.t. B((u0, v0), ρ0) ⊂ Aα,β . Then

dLS [I −Nf ,B((u0, v0), ρ), 0] = 1, for all 0 < ρ ≤ ρ0,

where Nf stands for the fixed point operator associated to (7).
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• g1, g2 : [0,R]× [0,∞)2 → [0,∞) continuous
[rN−1ϕ(u′)]′ + rN−1g1(r , u+, v+) = 0,

[rN−1ϕ(v ′)]′ + rN−1g2(r , u+, v+) = 0,

u′(0) = u(R) = 0 = v(R) = v ′(0),

(10)

where ξ+ := max{0, ξ}.
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Lemma 4.

Assume that g1, g2 satisfy hypothesis:

(Hg ) (i) g1(r , s, t) > 0 < g2(r , s, t), ∀s, t > 0, ∀r ∈ (0,R];

(ii) g1(r , ξ, 0) = g2(r , 0, ξ) = 0, ∀ξ > 0, ∀r ∈ (0,R].

If there is some M > 0 s.t. either

lim
s→0+

g1(r , s, t)

s
= 0 uniformly with r ∈ [0,R], t ∈ [0,M] (11)

or

lim
t→0+

g2(r , s, t)

t
= 0 uniformly with r ∈ [0,R], s ∈ [0,M], (12)

then there exists ρ0 > 0 s.t.

dLS [I −Ng ,Bρ, 0] = 1 for all 0 < ρ ≤ ρ0,

where Ng is the fixed point operator associated to problem (10).
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Remark 2.1.

Under hypothesis (Hg ) in Lemma 4 any nontrivial solution of problem (10) is a
positive solution of the system

[rN−1ϕ(u′)]′ + rN−1g1(r , u, v) = 0,

[rN−1ϕ(v ′)]′ + rN−1g2(r , u, v) = 0,

u′(0) = u(R) = 0 = v(R) = v ′(0).

(13)
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Back to the gradient system (6) under hypothesis (H)

Theorem 5.

Assume (H). Then there exists Λ > 0 s.t. the system (6) has zero, at least one
or at least two positive solutions according to λ ∈ (0,Λ), λ = Λ or λ > Λ.

Proof. We assume that 0 < q ≤ p > 1 and we make use of the equivalent
system: 

[rN−1ϕ(u′)]′ + λrN−1µ(r)(p + 1)up+v
q+1
+ = 0,

[rN−1ϕ(v ′)]′ + λrN−1µ(r)(q + 1)up+1
+ vq

+ = 0,

u′(0) = u(R) = 0 = v(R) = v ′(0)

(14)

Iλ(u, v) =
2RN

N
−
∫ R

0

rN−1[
√

1− u′2+
√

1− v ′2]dr−λ
∫ R

0

rN−1µ(r)up+1
+ vq+1

+ dr

u0(r) = v0(r) = R − r ⇒ Iλ(u0, v0) < 0, for λ > 0 large enough

⇒ S := {λ > 0 : (6) has a positive solution} 6= ∅

Daniela GURBAN West University of Timişoara
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1. Existence of Λ; the cases λ ∈ (0,Λ) and λ = Λ

• λ ∈ S⇒ λ > 2N/[(p + 1)Rp+q+2 max
[0,R]

µ](> 0)

(0 <) Λ := inf S (< +∞)

• Λ ∈ S
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2. The case λ > Λ.

• (Λ,∞) ⊂ S: λ0 ∈ (Λ,∞)
?⇒ λ0 ∈ S

>> (uΛ, vΛ) a positive solution of (6) with λ = Λ ⇒ (uΛ, vΛ) is a lower solution
for (14) with λ = λ0 >> an upper solution (uH1 , vH2 ) for (14) with λ = λ0 can

be constructed s.t. uΛ < uH1 vΛ < vH2

⇒ (14) has a positive solution (Proposition 2.1) ⇒ λ0 ∈ S.
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• λ0 ∈ (Λ,∞)
?⇒ (14) with λ = λ0 has a second positive solution.

>> (uΛ, vΛ) be the lower solution and (uH1 , vH2 ) be the upper solution
constructed as above

>> fix (u0, v0) a positive solution of (14) with λ = λ0 s.t.

(u0, v0) ∈ A := {(u, v) ∈ C1
M : uΛ ≤ u ≤ uH1 , vΛ ≤ v ≤ vH2}.
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>> ∃ ε > 0 s.t. B((u0, v0), ε) ⊂ A

If (14) has a second solution contained in A, then it is nontrivial and the proof
is complete

� If not, Lemma 3 ⇒

dLS [I −Nλ0 ,B((u0, v0), ρ), 0] = 1 for all 0 < ρ ≤ ε,

where Nλ0 is the fixed point operator associated to (14) with λ = λ0

� dLS [I −Nλ0 ,Bρ, 0] = 1 for all ρ ≥ R + 1 (Proposition 2.2)

� dLS [I −Nλ0 ,Bρ, 0] = 1 for ρ > 0 small (Lemma 4)
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B ρ1, ρ2 > 0 be small and ρ3 ≥ R + 1 s.t.

B̄((u0, v0), ρ1) ∩ B̄ρ2 = ∅ and B̄((u0, v0), ρ1) ∪ B̄ρ2 ⊂ Bρ3

Additivity-excision property of Leray-Schauder degree ⇒

dLS [I −Nλ0 ,Bρ3\[B̄((u0, v0), ρ1) ∪ B̄ρ2 ], 0] = −1.

⇒ Nλ0 has a fixed point (u, v) ∈ Bρ3\[B̄((u0, v0), ρ1) ∪ B̄ρ2 ] ⇒ (14) has a
second positive solution.
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Corollary 6.

Assume (H). Then there exists Λ > 0 s.t. the problem M(u) + λµ(|x |)(p + 1)upvq+1 = 0 in B(R),
M(v) + λµ(|x |)(q + 1)up+1vq = 0 in B(R),
u|∂B(R) = 0 = v|∂B(R)

has zero, at least one or at least two positive solutions according to λ ∈ (0,Λ),
λ = Λ or λ > Λ.
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Thank you for your attention!
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