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Introduction

ut(t, x) = ∆u(t, x)− u(t, x) + g(u(t− h, x)); (1)

I h ≥ 0 is the delay,

I g : R+ → R+ is the birth function.



Introduction

Delayed Diffusive Nicholson’s Blowflies Equation [Gurney,
Blythe, Nisbet, 1980]

ut(t, x) = ∆u(t, x)− δu(t, x) + pu(t− h, x)e−u(t−h,x) (2)

Diffusive Mackey-Glass equation [blood cell production model,
1977]

ut(t, x) = ∆u(t, x)− u(t, x) + p
u(t− h, x)

1 + (u(t− h, x))n
; (3)
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Introduction

I g(0) = 0, g(κ) = κ > 0 is a C2(R+) function.

I g′(0) > 1, g′(κ) < 1

I If g is not strictly increasing between 0 and κ, then it has a
unique global maximum in xM

I u0 ≡ 0, uκ ≡ κ are constant solutions to (1)
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I u(t, x) is a traveling wave solution for (1) if it is positive
and u(t, x) = φ(x+ ct), φ : R→ R is a C2(R), φ(−∞) = 0,
φ(+∞) = κ.

I c is the wave’s speed propagation.



φ′′(t)− cφ′(t)− φ(t) + g(φ(t− ch)) = 0, (4)

φ(−∞) = 0, φ(+∞) = κ



E. Trofimchuk, V. Tkachenko and S. Trofimchuk,2008.
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Implicit equation of c∗(h, g′(κ)):

β − α
βe−αch − αe−βch

=
q2 + q

q2 + 1
,

α < 0 < β roots of z2 − cz − 1 = 0, q := g′(κ).



Linearized equation about

I 0 equilibrium : φ′′(t)− cφ′(t)− φ(t) + g′(0)φ(t− ch) = 0,

I κ equilibrium : φ′′(t)− cφ′(t)− φ(t) + g′(κ)φ(t− ch) = 0,

Characteristic equations:

I 0 equilibrium: χ0(z) := z2 − cz − 1 + g′(0)e−chz = 0,

I κ equilibrium: χκ(z) := z2 − cz − 1 + g′(κ)e−chz = 0,



Lemma

(a) There exist c0 = c0(h, g
′(0)) > 0 such that the characteristic

equation χ0(z) = 0 has exactly two simple real roots
0 < λ = λ(c) < µ = µ(c) if and only if c > c0(h). Next, if
c > c0, then all complex roots {λj}j≥1 of this equation are
simple and can be ordered in such a way that

. . . ≤ R(λ3) ≤ R(λ4) ≤ R(λ2) = R(λ1) < λ < µ. (5)

Finally c0(h) is a decreasing function, with c0(+∞) = 0.

(b) Let q := g′(κ). There exist cκ = cκ(h) ∈ (0,+∞] such that
the characteristic equation χκ(z) = 0 has three real roots
λ1 ≤ λ2 < 0 < λ3 if and only if c ≤ cκ(h). Furthermore,
cκ(0) = +∞ and cκ(h) is strictly decreasing in its domain,
with cκ(+∞) = 0.



Theorem
If g(x) ≤ g′(0)x and g(x) ≤ g′(κ)(x− k) + k, equation (4) has a
monotone solution φ(t) if and only if

(h, c) ∈ DL := {(h, c)/ c0(h) ≤ c ≤ cκ(h)}
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Implicit equations of cκ(h):

2 +
√
c4h2 + 4c2h2 + 4

c2h2|q|
= exp

(
1 +

√
c4h2 + 4c2h2 + 4− c2h

2

)
.



Theorem (1)

If g is not strictly increasing in [0, κ], then equation 1 has a
slowly oscillating traveling wave for each (h, c) ∈ D∗\DL



Nicholson’s Equation

ut(t, x) = ∆u(t, x)− δu(t, x) + pu(t− h, x)e−u(t−h,x) (6)

I If p/δ > 1 is a monostable reaction diffusion equation, with
equilibria u0 = 0 and uκ = ln(p/δ)

I If 1 < p/δ ≤ e there exist a unique traveling wave solution
and it must be monotone (showed using super- and sub-
solution method for all c > c0(h) in [So-Zou, 2001]).

I if e < p/δ ≤ e2 then there exist traveling waves solutions
for al (h, c) ∈ D∗ and there are monotone or slowly
oscilating [E. Trofimchuk, V. Tkachenko and S. Trofimchuk,
2008], also there are monotone if (h, c) ∈ DL ⊂ D∗ [A.
Gomez, S. Trofimchuk, 2014] and slowly oscillating if
(h, c) ∈ D∗\DL (corollary of Theorem 1)
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Theorem
If p/δ ∈ (e, e2] the region DL can have one of the following
geometric forms with ν0 ≈ 2.808.. and ha defined by
δhae

δha = [e ln(p/eδ)]−1
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Figure: p/δ > ν0

there exist a maximal delay h0 to the monotonicity
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Figure: p/δ < ν0

At minimum speed of propagation, the traveling waves solutions
are monotone
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