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Hysteresis operators

One-dimensional hysteresis operators on an interval I = 〈0,T 〉.
Functional dependence:

T : v (function on I ) 7−→ T [v ] (function on I ) .

Hysteresis operators are:

I rate independent — the output T [v ] is independent of speed
of the input v : T [v ◦ ϕ](t) = T [v ](ϕ(t)) for any
nondecreasing mapping ϕ from I onto I ,

I causal — the output is independent of future input, i. e. if
u(s) = v(s) for all s ≤ t then T [u](t) = T [v ](t) and

I locally monotone:
non-decreasing input causes non-decreasing output
non-increasing input causes non-increasing output, i.e.
T [v ]′(t) · v ′(t) ≥ 0 for a. e. t ∈ I .



Hysteresis operators

One-dimensional hysteresis operators on an interval I = 〈0,T 〉.
Functional dependence:

T : v (function on I ) 7−→ T [v ] (function on I ) .

Hysteresis operators are:

I rate independent — the output T [v ] is independent of speed
of the input v : T [v ◦ ϕ](t) = T [v ](ϕ(t)) for any
nondecreasing mapping ϕ from I onto I ,

I causal — the output is independent of future input, i. e. if
u(s) = v(s) for all s ≤ t then T [u](t) = T [v ](t) and

I locally monotone:
non-decreasing input causes non-decreasing output
non-increasing input causes non-increasing output, i.e.
T [v ]′(t) · v ′(t) ≥ 0 for a. e. t ∈ I .



Hysteresis operators

One-dimensional hysteresis operators on an interval I = 〈0,T 〉.
Functional dependence:

T : v (function on I ) 7−→ T [v ] (function on I ) .

Hysteresis operators are:

I rate independent — the output T [v ] is independent of speed
of the input v : T [v ◦ ϕ](t) = T [v ](ϕ(t)) for any
nondecreasing mapping ϕ from I onto I ,

I causal — the output is independent of future input, i. e. if
u(s) = v(s) for all s ≤ t then T [u](t) = T [v ](t) and

I locally monotone:
non-decreasing input causes non-decreasing output
non-increasing input causes non-increasing output, i.e.
T [v ]′(t) · v ′(t) ≥ 0 for a. e. t ∈ I .



Hysteresis operators

One-dimensional hysteresis operators on an interval I = 〈0,T 〉.
Functional dependence:

T : v (function on I ) 7−→ T [v ] (function on I ) .

Hysteresis operators are:

I rate independent — the output T [v ] is independent of speed
of the input v : T [v ◦ ϕ](t) = T [v ](ϕ(t)) for any
nondecreasing mapping ϕ from I onto I ,

I causal — the output is independent of future input, i. e. if
u(s) = v(s) for all s ≤ t then T [u](t) = T [v ](t) and

I locally monotone:
non-decreasing input causes non-decreasing output
non-increasing input causes non-increasing output, i.e.
T [v ]′(t) · v ′(t) ≥ 0 for a. e. t ∈ I .



Basic stop and play hysteresis operators

Variational inequality definition

Let r > 0, s0 ∈ 〈−r , r〉, I = 〈0,T 〉 and u ∈W 1,1(I )

Let s ∈W 1,1(T ) be the solution of the variational inequality

s(t) ∈ 〈−r , r〉 s(0) = s0
r

(s ′(t)− u′(t))(s̃ − s(t)) ≥ 0 ∀s̃ ∈ 〈−r , r〉 t ∈ (0,T )

Then
Sr [u](t) := s(t) is the stop operator

and the complement

Pr [u](t) := u(t)− s(t) is the play operator



Graphic interpretation: Piston in cylinder model

−r 0 r

Stop operator: position of the piston with respect to the cylinder.
Play operator: position of center of the cylinder

0 Pr [v ] v

Sr [v ]
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Mechanical interpretation: elastic-friction model

The stop operator Sr [u](t) := s(t) serial composition

The play operator Pr [u](t) := u(t)− s(t) paralel composition
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Paralel combination of stop operators



The Prandtl-Ishlinskii operator of stop type

F [u] := η(0)u −
∫ ∞

0
Sr [u]dη(r)

η(r) - positive, decreasing on 〈0,∞)

I concave increasing branches

I convex decreasing branches



The Prandtl-Ishlinskii operator of play type

G[u] := ζ(0)u +

∫ ∞
0
Pr [u]dζ(r)

ζ(r) - positive, increasing on 〈0,∞), ζ(0) > 0.

I convex increasing branches

I concave decreasing branches



Pair of mutually inverse operators

Let ϕ and ψ be mutually inverse functions on 〈0,∞),
ϕ – concave, ψ – convex,

t = ϕ(s) ⇐⇒ s = ψ(t)

and η(s) = ϕ′(s) non-increasing, on 〈0,∞), η(∞) > 0
and ζ(t) = ψ′(t) non-decreasing on 〈0,∞), ζ(0) > 0, we adopt

β ≤ ζ(x , r) ≤ 1/α.

The pair η, ζ is said to be in PI (α, beta).

The corresponding Prandtl-Ishlinskij operators are mutually inverse:

σ(t) = Fη[e](t) ⇐⇒ e(t) = Gζ [σ](t)

e – strain, deformation σ – stress



Properties of hysteresis operator

The operators are first defined on piecewise monotone functions,
by variational inequality can be extended to

Fη,Gζ : W 1,∞(I )→W 1,∞(I )

and by continuity to

Fη,Gζ : W 1,1(I )→W 1,1(I )

The operators are Lipschitz continuous:

|Fη[e1](t)−Fη[e2](t)| ≤
(

1

β
− α

)
‖e1 − e2‖<0,t>

|Gζ [σ1](t)− Gζ [σ2]|(t) ≤
(

1

α

)
‖σ1 − σ2‖<0,t>



Properties of hysteresis operator

The operators are first defined on piecewise monotone functions,
by variational inequality can be extended to

Fη,Gζ : W 1,∞(I )→W 1,∞(I )

and by continuity to

Fη,Gζ : W 1,1(I )→W 1,1(I )

The operators are Lipschitz continuous:

|Fη[e1](t)−Fη[e2](t)| ≤
(

1

β
− α

)
‖e1 − e2‖<0,t>

|Gζ [σ1](t)− Gζ [σ2]|(t) ≤
(

1

α

)
‖σ1 − σ2‖<0,t>



Properties of hysteresis operator

The operators are local monotone:
Let (ξ, ζ) ∈ PI (α, β) and σ ∈W 1,1(I ).
Let e := Gζ [σ]. Then for a. e. t ∈ I
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and continuously dependent on distribution function ζ
Let (ηi , ζi ) ∈ PI (α, β) be two pairs of two distribution functions,
Gζ1 ,Gζ2 the corresponding operators and σ1, σ2 ∈W 1,1(I ) arbitrary
input functions. Then

‖Gζ1 [σ1]−Gζ2 [σ2]‖[0,t] ≤ ζ1(∞)‖σ1−σ2‖[0,t]+

∫ ‖σ2‖[0,t]

0
|ζ1(r)−ζ2(r)|dr .



Properties of hysteresis operator

The operators are local monotone:
Let (ξ, ζ) ∈ PI (α, β) and σ ∈W 1,1(I ).
Let e := Gζ [σ]. Then for a. e. t ∈ I

α

(
de

dt
(t)

)2

≤ de

dt
(t)

dσ

dt
(t) ≤ 1

β

(
dσ

dt
(t)

)2

,

β

(
dσ

dt
(t)

)2

≤ de

dt
(t)

dσ

dt
(t) ≤ 1

α

(
de

dt
(t)

)2

.

and continuously dependent on distribution function ζ
Let (ηi , ζi ) ∈ PI (α, β) be two pairs of two distribution functions,
Gζ1 ,Gζ2 the corresponding operators and σ1, σ2 ∈W 1,1(I ) arbitrary
input functions. Then

‖Gζ1 [σ1]−Gζ2 [σ2]‖[0,t] ≤ ζ1(∞)‖σ1−σ2‖[0,t]+

∫ ‖σ2‖[0,t]

0
|ζ1(r)−ζ2(r)|dr .



Spatially dependent hysteresis operator

The Prandtl-Ishlinskii operators are determined by distribution
functions ξ(r), ζ(r).
In case of an inhomogeneous material the material properties
depend even on space variable x . Thus both function η and ζ will
depend in addition on space variable x , i.e.

η = η(x , r) , ζ = ζ(x , r) .



Reliable solutions of problems with uncertain data

Boundary value problem modeling a real engineering problem
contains data (constants, dimensions, functions, etc.) in
constitutive relations, which are obtained by measurements and
thus are not known exactly, the values are loaded with some errors.

The actual values are known to be in some extent.
This leads to the so-called problems with uncertain data.

Solutions:
(a) stochastic approach
(b) deterministic approach by I. Babuška and I. Hlaváček
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Ivan Hlaváček and Ivo Babuška 2007



The worst scenario method

We are looking for the worst scenario, the worst situation that can
happen on the admissible uncertain data.

I Uad - the set of all admissible data – uncertain data

I ua is the solution to the problem Pa with data a

I Φ(a, u) – functional evaluating dangerousness of the modelled
situation.

Mathematic formulation of the problem:

Find a∗ ∈ Uad and ua∗ solution of the problem Pa such that

Φ(a∗, ua∗) ≥ Φ(a, ua) ua solution of Pa ∀a ∈ Uad.

We aim to prove that such maximum exists.

Idea: choose a compact set Uad and the cost functional Φ
continuously dependent on the data.
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The cost functional

If the quantity u is continuous, the functional can be the value in a
critical point x0, e.g.

Φ(a, ua) = ua(x0) where ua is solution of the problem Pa

if ua is in an Lp space only, we take e.g. its integral mean over a
subset – critical area, e.g.

Φ(a, ua) =
1

|K |

∫
K
ua(x)dx .



Problems with hysteresis operator

Scalar wave equation – vibration of an elastic bar

c utt = k div σ + f σ = F [ux ]

physical interpretation: vibration of an elasto-plastic bar or

Diffusion equation

c ut = k div σ + f σ = F [ux ]

with hysteresis operator

F : e(t) 7→ σ(t) = F [e](t)
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Diffusion problem

Initial boundary value problem

c ut = div σ + f x ∈ Ω = (0, `) , t ∈ I = (0,T )

σ = F [ux ] or ux = G[σ], x ∈ Ω , t ∈ I

completed by initial and boundary condition

u(x , 0) = u0(x), x ∈ (0, `) , x ∈ Ω ,

u(0, t) = 0 , σ(`, t) = 0 , t ∈ I = (0,T ) .

Hypothesis:

I c ∈ L∞((0, `)) and 0 < cm ≤ c(x) ≤ cM ,

I η, ζ ∈ L∞(Ω× 〈0,∞)) and (η, ζ)(x , cdot) ∈ PI (α, β),

I f ∈W 1,1(I , L2(Ω)

I u0 ∈W 2,2(Ω) and satisfies compatibility conditions.



Existence of the solution

Proposition
The problem admits unique solution u(x , t), σ(x , t) satisfying

u, σ ∈ C (Ω× I ) , ux ∈ L2(Ω;C (I )) , ut , σx ∈ L∞(I , L2(Ω))

and are bounded in the corresponding norms.



The set of admissible data

The constitutive parameters e.g. c(x) are in a compact sets, i.e.
closed bounded intervals, e.g.

c(x) = c0 ∈ 〈cmin, c
max〉

or piecewise constant on given intervals.
Any sequence of the set contains a uniformly converging
subsequence.

The distribution functions ζ(x , r) are piecewise constant in x and
non-decreasing in r , constant outside a fixed interval 〈0,R〉
and bounded: ζ(x , r) ∈ 〈β, 1/α〉.
Any sequence of the set contains a subsequence converging in L∞.
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Worst scenario method

Proposition
Under introduced assumptions the worst scenario has solution, i.e.
the critical functional Φ(a, u) attains its maximum value a∗, u∗. on
the set of admissible data Uad.

Main steps of the proof:

I Take a sequence Φ(ak , uak
) converging to the supremum.

I Due to compactness of Uad a convergent subsequence is
chosen.

I Due to continuity the subsequence tends to the maximum,
which is finite.
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Scalar wave equation

Problem of vibration of an elastoplastic bar (0, `) = J

ρ utt = σx + f σ = F [ux ]

with boundary and initial conditions is reformulated into a first
order system

ρ vt = σx + f et = vx e = Gζ [σ]

where v := ut e := ux with boundary conditions e.g. v(0, t) = 0,
σ(`, t) = 0 and initial condition v(x , 0) = v0(x) and σ(x , 0) = σ0.
Data of the problem: ρ(x) ∈ L∞((0, `)), pair (η(x , r), ζ(x , r)) of
adjoint functions each in L∞((0, `)), f ∈W 1,1(0,T ; (0, `)), initial
conditions.



Existence of the soution

Proposition
The problem admits unique solution u(x , t), v(x , t), σ(x , t)
satisfying

I v , σ ∈ C (〈0,T 〉 × 〈0, `〉)
I e ∈ L2((0, `),C (〈0,T 〉
I et , vt , σt , vx , σx ∈ L∞((0,T ); L2(0, `)).
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On Monday you could see Castle Vevěŕı visited by W. Churchhill in 1906, 1907, 1908


