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Antonia Chinǹı (University of Messina) Applications of critical points results to existence and multiplicity of solutions for elliptic problems with variable exponentDiffEqApp 2/47



Variable exponent spaces
Constant’s estimate

The problems
Notation

−∆p(x)u = λf(x, u)

∆p(x)u := div(|∇u|p(x)−2∇u)

electrorheological fluids

Ruz̆ic̆ka (1999, 2000), Acerbi-Mingione (2002),
Acerbi-Mingione-Seregin (2004)

thermorheological fluids

Antontsev-Rodrigues (2006)

image restoration

Levine (2005), Aboulaich-Meskine-Souissi (2008)
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Antonia Chinǹı (University of Messina) Applications of critical points results to existence and multiplicity of solutions for elliptic problems with variable exponentDiffEqApp 2/47



Variable exponent spaces
Constant’s estimate

The problems
Notation

−∆p(x)u = λf(x, u)

∆p(x)u := div(|∇u|p(x)−2∇u)

electrorheological fluids

Ruz̆ic̆ka (1999, 2000), Acerbi-Mingione (2002),
Acerbi-Mingione-Seregin (2004)

thermorheological fluids

Antontsev-Rodrigues (2006)

image restoration

Levine (2005), Aboulaich-Meskine-Souissi (2008)
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Variable exponent spaces
Constant’s estimate

The problems
Notation

W 1,p(x)(Ω)

Diening L., Harjulehto P., Hästö P. and Ruz̆icka M.
Lebesgue and Sobolev spaces with variable exponents,
Lecture Notes in Mathematics, 2017 (2011), Springer-Verlag

Cruz-Uribe D., Fiorenza A.
Variable Lebesgue Spaces: Foundations and Harmonic Analysis,
(2013), Birkhauser

Research group on variable exponent Lebesgue and Sobolev spaces
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Variable exponent spaces
Constant’s estimate

The problems
Notation

Ω ⊂ lRN open, bounded, p ∈ C(Ω̄)

1 < p− := inf
x∈Ω

p(x) ≤ p(x) ≤ p+ := sup
x∈Ω

p(x) < +∞

Lp(x)(Ω) :=

{
u : Ω→ lR : u measurable, ρp(u) :=

∫
Ω

|u(x)|p(x)dx < +∞
}

‖u‖Lp(x)(Ω) := inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
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Variable exponent spaces
Constant’s estimate

The problems
Notation

W 1,p(x)(Ω) :=
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
‖u‖W 1,p(x)(Ω) := ‖u‖Lp(x)(Ω) + ‖|∇u|‖Lp(x)(Ω)

W
1,p(x)
0 (Ω) := C∞0 (Ω)

W 1,p(x)(Ω)

‖u‖ := ‖|∇u|‖Lp(x)(Ω)

Lp(x)(Ω), W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) are separable, reflexive and

uniformly convex Banach spaces.
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Variable exponent spaces
Constant’s estimate

The problems
Notation

p− > N

p− > N

⇓
compact︷ ︸︸ ︷

W 1,p(x)(Ω) ↪→︸︷︷︸
continuous

W 1,p−(Ω) ↪→︸︷︷︸
compact

C0(Ω̄)

⇓

compact︷ ︸︸ ︷
W

1,p(x)
0 (Ω) ↪→ C0(Ω̄)

there exists c0 > 0 such that

‖u‖C0(Ω̄) ≤ c0‖u‖W 1,p(x)
0 (Ω)
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Variable exponent spaces
Constant’s estimate

The problems
Notation

p− > N estimate of constant for embedding W
1,p(x)
0 (Ω) ↪→ C0(Ω)

Bonanno-C. -Complex Var. Elliptic Equ.-(2012)

c0 ≤ kp−(|Ω|+ 1)

W
1,p(x)
0 (Ω) ↪→︸︷︷︸

|Ω|+1

W 1,p−

0 (Ω) ↪→︸︷︷︸
kp−

C0(Ω̄)

kp− ≤
N
− 1

p−

√
π

[
Γ

(
1 +

N

2

)] 1
N
(
p− − 1

p− −N

)1− 1

p−

|Ω|
1
N−

1

p−
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Variable exponent spaces
Constant’s estimate

The problems
Notation

p− > N estimate of constant for embedding W
1,p(x)
0 (Ω) ↪→ C0(Ω) with respect ‖ · ‖a

‖u‖
W

1,p(x)
0

:= inf

{
σ > 0 :

∫
Ω

∣∣∣∣∇u(x)

σ

∣∣∣∣p(x)

dx ≤ 1

}
‖ · ‖ is equivalent to ‖ · ‖a

‖u‖a = inf

{
σ > 0 :

∫
Ω

(∣∣∣∣∇u(x)

σ

∣∣∣∣p(x)

+ a(x)

∣∣∣∣u(x)

σ

∣∣∣∣p(x))
dx ≤ 1

}

c∗0 ≤ kp−(|Ω|+ 1)
[a−]1/p + 1

[a−]1/p

‖u‖
W

1,p(x)
0

≤ ‖u‖W1,p(x) ≤
[a−]1/p + 1

[a−]1/p
‖u‖a

Antonia Chinǹı (University of Messina) Applications of critical points results to existence and multiplicity of solutions for elliptic problems with variable exponentDiffEqApp 8/47



Variable exponent spaces
Constant’s estimate

The problems
Notation

p− > N estimate of constant for embedding W
1,p(x)
0 (Ω) ↪→ C0(Ω) with respect ‖ · ‖a

‖u‖
W

1,p(x)
0

:= inf

{
σ > 0 :

∫
Ω

∣∣∣∣∇u(x)

σ

∣∣∣∣p(x)

dx ≤ 1

}
‖ · ‖ is equivalent to ‖ · ‖a

‖u‖a = inf

{
σ > 0 :

∫
Ω

(∣∣∣∣∇u(x)

σ

∣∣∣∣p(x)

+ a(x)

∣∣∣∣u(x)

σ

∣∣∣∣p(x))
dx ≤ 1

}

c∗0 ≤ kp−(|Ω|+ 1)
[a−]1/p + 1

[a−]1/p

‖u‖
W

1,p(x)
0

≤ ‖u‖W1,p(x) ≤
[a−]1/p + 1

[a−]1/p
‖u‖a
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Variable exponent spaces
Constant’s estimate

The problems
Notation

1 < p− ≤ p+ < +∞

Embedding’s theorem

If p ∈ C(Ω̄) with p(x) > 1 for each x ∈ Ω̄ and q ∈ C(Ω̄) with

1 < q(x) < p∗(x) :=

{
Np(x)
N−p(x) if p(x) < N

∞ if p(x) ≥ N

for all x ∈ Ω, then there exists a compact embedding

W 1,p(x)(Ω) ↪→ Lq(x)(Ω)

.
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Variable exponent spaces
Constant’s estimate

The problems
Notation

1 < p− ≤ p+ < +∞,estimate of constant for embedding W
1,p(x)
0 (Ω) ↪→ L1(Ω)

p− < N , Bonanno-C. -J.M.A.A.-(2014)

k1 ≤ cp−∗ |Ω|
p−∗−1

p−∗ (|Ω|+ 1)

W
1,p(x)
0 (Ω) ↪→︸︷︷︸

|Ω|+1

W 1,p−

0 (Ω) ↪→︸︷︷︸
cp−∗ |Ω|

p−∗−1

p−∗

L1(Ω)

cp−∗ is the constant of the continuous embedding

W 1,p−

0 (Ω) ↪→ Lp
−∗

(Ω)

cp−∗ =
1√
π

1

N
1

p−

(
p− − 1

N − p−

)1− 1

p−
[

Γ(1 + N
2 )Γ(N)

Γ( Np− )Γ(1 +N − N
p− )

] 1
N
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Antonia Chinǹı (University of Messina) Applications of critical points results to existence and multiplicity of solutions for elliptic problems with variable exponentDiffEqApp 12/47



Variable exponent spaces
Constant’s estimate

The problems
Notation

1 < p− ≤ p+ < +∞,estimate of constant for embedding (W 1,p(x)(Ω), ‖ · ‖a) ↪→ Lq(x)(Ω)

q ∈ C(Ω̄) and q+ < p−
∗
, Ω open and convex and p− 6= N ,

Barletta-C. -E.J.D.E.-(2013)

k̄q ≤ k̃p−,q+(1 + |Ω|)2(1 + ‖a‖∞)
1

p−
1 + [a−] 1

p

[a−] 1
p

W 1,p(x)(Ω) ↪→︸︷︷︸
(|Ω|+1)(1+‖a‖∞)1/p−

[a−]1/p+1

[a−]1/p

W 1,p−(Ω) ↪→︸︷︷︸
k̃p−,q+

Lq
+

(Ω) ↪→︸︷︷︸
|Ω|+1

Lq(x)(Ω)

k̃p−,q+ is the constant for embedding

(W 1,p−(Ω), ‖ · ‖a) ↪→ Lq
+

(Ω)
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The problems
Notation

The problems

p− > N

• Dirichlet problem

• multiple solutions
• infinitely many solutions

• Neumann-type differential
inclusion

• multiple solutions

1 < p− ≤ p+ < +∞

• Dirichlet problem

• multiple solutions

• Neumann problem

• multiple solutions

precise interval of
parameters Λ

Λ depends on
constant’s
embedding
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Variable exponent spaces
Constant’s estimate

The problems
Notation

there exist x0 ∈ Ω and τ > 0 such that

B(x0, sup
x∈Ω

sup{δ>0:B(x,δ)⊆Ω}︷︸︸︷
δ(x)︸ ︷︷ ︸
τ

) ⊆ Ω

ωτ := τN π
N
2

N
2 Γ(N2 )

,

fixed α > 0 and h ∈ C(Ω̄) we put

[α]
h

:= max{αh
−
, αh

+

} [α]h := min{αh
−
, αh

+

}

h : Ω× lR→ lR is a Carathéodory function,

H(x, ξ) :=

∫ ξ

0

h(x, t) dt
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Multiple solutions for Dirichlet problem
Infinitely many solutions for Dirichlet problem

Multiple solutions for a Neumann-type differential inclusion

p− > N

Bonanno G. and Marano S. A.,
On the structure of the critical set of non-differentiable functions
with a weak compactness condition,
Appl. Anal., 89 (2010), 1–10.

⇓

 −∆p(x)u = λf(x, u) in Ω

u = 0 on ∂Ω
(Dλ,f )

admits at least three weak solutions
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Antonia Chinǹı (University of Messina) Applications of critical points results to existence and multiplicity of solutions for elliptic problems with variable exponentDiffEqApp 16/47



Multiple solutions for Dirichlet problem
Infinitely many solutions for Dirichlet problem

Multiple solutions for a Neumann-type differential inclusion

p− > N

Bonanno G. and Marano S. A.,
On the structure of the critical set of non-differentiable functions
with a weak compactness condition,
Appl. Anal., 89 (2010), 1–10.

⇓

 −∆p(x)u = λf(x, u) in Ω

u = 0 on ∂Ω
(Dλ,f )

admits at least three weak solutions
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Antonia Chinǹı (University of Messina) Applications of critical points results to existence and multiplicity of solutions for elliptic problems with variable exponentDiffEqApp 16/47



Multiple solutions for Dirichlet problem
Infinitely many solutions for Dirichlet problem

Multiple solutions for a Neumann-type differential inclusion

p− > N

f : Ω× lR→ lR is a Carathéodory function

|f(x, t)| ≤ c(1 + |t|s−1), s ∈ [1, p−[

ess inf x∈ΩF (x, t) ≥ 0 for each t ∈ lR

there exist r > 0, δ > 0 with r < 1
p+

[
2δ
τ

]
p
ωτ
(
1− 1

2N

)
:

αr :=

∫
Ω

sup
|ξ|≤c0γr

F (x, ξ) dx <
p−ess inf x∈ΩF (x, δ)[

2δ
τ

]p
(2N − 1)

:= βδ
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Multiple solutions for Dirichlet problem
Infinitely many solutions for Dirichlet problem

Multiple solutions for a Neumann-type differential inclusion

p− > N

Bonanno, C.- Le Matematiche (2011)

for each λ ∈ Λr,δ :=] 1
βδ
, 1
αr

[, the problem (Dλ,f ) admits at least three
weak solutions.

c0 is the embedding’s constant of W
1,p(x)
0 (Ω) ↪→ C0(Ω)

γr := [p+r]
1
p
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Multiple solutions for Dirichlet problem
Infinitely many solutions for Dirichlet problem

Multiple solutions for a Neumann-type differential inclusion

p− > N

 −∆p(x)u = λf(x, u) in Ω

u = 0 su ∂Ω
(Dλ,f )

 −∆p(x)u+ a(x)|u|p(x)−2u = λf(x, u) in Ω

u = 0 su ∂Ω
(Dλ,a,f )

a ∈ L∞(Ω) with ess infΩa ≥ 0
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Multiple solutions for Dirichlet problem
Infinitely many solutions for Dirichlet problem

Multiple solutions for a Neumann-type differential inclusion

p− > N

Bonanno G. and Molica Bisci G.,
Infinitely many solutions for a boundary value problem with
discontinuous nonlinearities, (2009)

Ricceri B.,
A general variational principle and some of its applications, (2000)

⇓

 −∆p(x)u+ a(x)|u|p(x)−2u = λf(x, u) in Ω

u = 0 on ∂Ω
(Dλ,a,f )

admits infinitely many weak solutions

Antonia Chinǹı (University of Messina) Applications of critical points results to existence and multiplicity of solutions for elliptic problems with variable exponentDiffEqApp 20/47



Multiple solutions for Dirichlet problem
Infinitely many solutions for Dirichlet problem

Multiple solutions for a Neumann-type differential inclusion

p− > N

Bonanno G. and Molica Bisci G.,
Infinitely many solutions for a boundary value problem with
discontinuous nonlinearities, (2009)

Ricceri B.,
A general variational principle and some of its applications, (2000)

⇓

 −∆p(x)u+ a(x)|u|p(x)−2u = λf(x, u) in Ω

u = 0 on ∂Ω
(Dλ,a,f )

admits infinitely many weak solutions
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Antonia Chinǹı (University of Messina) Applications of critical points results to existence and multiplicity of solutions for elliptic problems with variable exponentDiffEqApp 20/47



Multiple solutions for Dirichlet problem
Infinitely many solutions for Dirichlet problem

Multiple solutions for a Neumann-type differential inclusion

p− > N

Bonanno G. and Molica Bisci G.,
Infinitely many solutions for a boundary value problem with
discontinuous nonlinearities, (2009)

Ricceri B.,
A general variational principle and some of its applications, (2000)

⇓

 −∆p(x)u+ a(x)|u|p(x)−2u = λf(x, u) in Ω

u = 0 on ∂Ω
(Dλ,a,f )

admits infinitely many weak solutions
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Multiple solutions for Dirichlet problem
Infinitely many solutions for Dirichlet problem

Multiple solutions for a Neumann-type differential inclusion

p− > N

σ(p+, N) = 1−µ̄N

µ̄N (1−µ̄)p+ = infµ∈]0,1[
1−µN

µN (1−µ)p+

σ(p−, N) = 1−µ̄N

µ̄N (1−µ̄)p−
= infµ∈]0,1[

1−µN

µN (1−µ)p−

I(τ , µ̄) :=

∫
B(x0,τ)\B(x0,µ̄τ)

(τ − |x− x0|)p(x) dx

β+ := σ(p+,N)

τp+ + ‖a‖∞
(

1 + I(τ,µ̄)

ωτ µ̄N (τ(1−µ̄))p+

)
β− := σ(p−,N)

τp−
+ ‖a‖∞

(
1 + I(τ,µ̄)

ωτ µ̄N (τ(1−µ̄))p−

)
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Antonia Chinǹı (University of Messina) Applications of critical points results to existence and multiplicity of solutions for elliptic problems with variable exponentDiffEqApp 21/47



Multiple solutions for Dirichlet problem
Infinitely many solutions for Dirichlet problem

Multiple solutions for a Neumann-type differential inclusion

p− > N

σ(p+, N) = 1−µ̄N

µ̄N (1−µ̄)p+ = infµ∈]0,1[
1−µN

µN (1−µ)p+

σ(p−, N) = 1−µ̄N

µ̄N (1−µ̄)p−
= infµ∈]0,1[

1−µN

µN (1−µ)p−

I(τ , µ̄) :=

∫
B(x0,τ)\B(x0,µ̄τ)

(τ − |x− x0|)p(x) dx

β+ := σ(p+,N)

τp+ + ‖a‖∞
(

1 + I(τ,µ̄)

ωτ µ̄N (τ(1−µ̄))p+

)
β− := σ(p−,N)

τp−
+ ‖a‖∞

(
1 + I(τ,µ̄)

ωτ µ̄N (τ(1−µ̄))p−

)
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Multiple solutions for Dirichlet problem
Infinitely many solutions for Dirichlet problem

Multiple solutions for a Neumann-type differential inclusion

p− > N

f : Ω× lR→ lR is an L1−Carathéodory function

A := lim inf
ξ→+∞

∫
Ω

max|t|≤ξ F (x, t) dx

ξp−
, B := lim sup

ξ→+∞

∫
B(x0,µ̄τ)

F (x, ξ) dx

ξp+

c∗0 embedding’s constant of (W
1,p(x)
0 (Ω), ‖ · ‖a) ↪→ C0(Ω)

Bonanno-C. - Complex Variables and Elliptic Equations - (2012)

(i) ess infx∈ΩF (x, ξ) ≥ 0 for each ξ ≥ 0

(ii) A <
p−

β+p+c∗0
p−ωτ µ̄N

B

=⇒ for each λ ∈ Λ :=

]
β+ωτ µ̄

N

Bp−
,

1

p+c∗0
p−A

[
, the problem (Dλ,a,f )

admits a sequence of weak solutions which is unbounded in

W
1,p(x)
0 (Ω)
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A := lim inf
ξ→+∞

∫
Ω

max|t|≤ξ F (x, t) dx

ξp−
, B := lim sup

ξ→+∞

∫
B(x0,µ̄τ)

F (x, ξ) dx

ξp+

c∗0 embedding’s constant of (W
1,p(x)
0 (Ω), ‖ · ‖a) ↪→ C0(Ω)

Bonanno-C. - Complex Variables and Elliptic Equations - (2012)

(i) ess infx∈ΩF (x, ξ) ≥ 0 for each ξ ≥ 0

(ii) A <
p−

β+p+c∗0
p−ωτ µ̄N

B

=⇒ for each λ ∈ Λ :=

]
β+ωτ µ̄

N

Bp−
,

1

p+c∗0
p−A

[
, the problem (Dλ,a,f )

admits a sequence of weak solutions which is unbounded in

W
1,p(x)
0 (Ω)
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Multiple solutions for Dirichlet problem
Infinitely many solutions for Dirichlet problem

Multiple solutions for a Neumann-type differential inclusion

p− > N

f : Ω× lR→ lR is an L1−Carathéodory function

A? := lim inf
ξ→0+

∫
Ω

max|t|≤ξ F (x, t) dx

ξp+ , B? := lim sup
ξ→0+

∫
B(x0,µ̄τ)

F (x, ξ) dx

ξp−

c∗0 embedding’s constant of (W
1,p(x)
0 (Ω), ‖ · ‖a) ↪→ C0(Ω)

Bonanno-C. - Complex Variables and Elliptic Equations -(2012)

(i) ess infx∈ΩF (x, ξ) ≥ 0 for each ξ ≥ 0

(iii) A? <
p−

β−p+c∗0
p+ωτ ν̄N

B?.

=⇒ for each λ ∈ Λ? :=

]
β−ωτ ν̄

N

B?p−
,

1

p+c∗0
p+A?

[
, the problem (Dλ,a,f )

admits a sequence of distinct weak solutions which strongly

converges to zero in W
1,p(x)
0 (Ω).
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Multiple solutions for Dirichlet problem
Infinitely many solutions for Dirichlet problem

Multiple solutions for a Neumann-type differential inclusion

p− > N

Bonanno G. and Candito P.,
J. Differential Equations 244 (2008), 3031–3059.

Bonanno G. and Marano S. A.,
Appl. Anal., 89 (2010), 1–10.

⇓


−∆p(x)u+ a(x)|u|p(x)−2u ∈ λ∂F (x, u) in Ω

∂u

∂ν
= 0 on ∂Ω

(Ñλ)

admits at least three solutions
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Multiple solutions for Dirichlet problem
Infinitely many solutions for Dirichlet problem

Multiple solutions for a Neumann-type differential inclusion

p− > N

f(·, ξ) measurable for each ξ ∈ lR;

f(x, ·) locally essentially bounded for each x ∈ Ω;

there exist q ∈ C(Ω̄), with 1 < q− ≤ q+ < p− and c > 0 such that

|f(x, ξ)| ≤ c(1 + |ξ|q(x)−1)

for each (x, ξ) ∈ Ω× lR.

c̄0 embedding’s constant of (W 1,p(x)(Ω), ‖ · ‖a) ↪→ C0(Ω)

there exist r > 0, ξ1 ∈ lR with r <
a−

p+
|Ω| [|ξ1|]p such that

∫
Ω

sup
|ξ|≤c̄0[rp+]1/p

F (x, ξ) dx <
rp−

|Ω| a+[|ξ1|]p

∫
Ω

F (x, ξ1) dx
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Multiple solutions for Dirichlet problem
Infinitely many solutions for Dirichlet problem

Multiple solutions for a Neumann-type differential inclusion

p− > N

Λ :=

]
p−

|Ω| a+[|ξ1|]p
∫

Ω
F (x, ξ1) dx

,
r∫

Ω
sup|ξ|≤c̄0[rp+]1/p F (x, ξ) dx

[

C. , Livrea - Discrete and Continuous Dynamical Systems - (2012)

for each λ ∈ Λ, the problem (Ñλ) admits at least three distinct solutions.
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Multiple solutions for Dirichlet problem
Multiple solutions for Neumann problem

Existence of a non trivial weak solution
Existence of two distinct weak solutions
Existence of three weak solutions
Multiple solutions with discontinuous non linear term

1 < p− ≤ p+ < +∞

Bonanno G.,
A critical point theorem via the Ekeland variational principle,
Nonlinear Analysis, 75 (2012), 2992–3007.

⇓

 −∆p(x)u = λf(x, u) in Ω

u = 0 on ∂Ω
(Dλ,f )

admits a non trivial weak solution
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Antonia Chinǹı (University of Messina) Applications of critical points results to existence and multiplicity of solutions for elliptic problems with variable exponentDiffEqApp 28/47



Multiple solutions for Dirichlet problem
Multiple solutions for Neumann problem

Existence of a non trivial weak solution
Existence of two distinct weak solutions
Existence of three weak solutions
Multiple solutions with discontinuous non linear term

1 < p− ≤ p+ < +∞

Bonanno-C. -J.M.A.A.-(2014)

f : Ω× lR→ lR is a Carathéodory function
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Antonia Chinǹı (University of Messina) Applications of critical points results to existence and multiplicity of solutions for elliptic problems with variable exponentDiffEqApp 28/47



Multiple solutions for Dirichlet problem
Multiple solutions for Neumann problem

Existence of a non trivial weak solution
Existence of two distinct weak solutions
Existence of three weak solutions
Multiple solutions with discontinuous non linear term

1 < p− ≤ p+ < +∞

Bonanno G.,
Relations between the mountain pass theorem and local minima,
Adv.Nonlinear Anal., 1 (2012), 205–220.

⇓

 −∆p(x)u = λf(x, u) in Ω

u = 0 on ∂Ω
(Dλ,f )

admits at least two distinct weak solutions
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|f(x, t)| ≤ a1 + a2|t|q(x)−1, q ∈ C(Ω̄), 1 < q(x) < p∗(x)

F (x, t) ≤ c(1 + |t|γ(x)), γ ∈ C(Ω̄), 1 < γ− ≤ γ+ < p−

F (x, t) ≥ 0, ∀(x, t) ∈ Ω× lR+

there exist r > 0 and δ > 0 such that
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[
2δ
τ

]
p
ωτ
(
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2N

)
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p− infx∈Ω F (x, δ)[
2δ
τ

]p
(2N − 1)

=⇒ for each λ ∈ Λr,δ :=
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[ 2δ
τ ]

p
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p− infx∈Ω F (x,δ) ,
1
αr

[
, the problem (Dλ,f )

admits three weak solutions.
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q−
[kq]

q
(p+)

q+

p−
[
[r]

1
p

]q}
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1 < p− ≤ p+ < +∞

Bonanno-C. - J.M.A.A. - (2014)

|f(x, t)| ≤ a1 + a2|t|q(x)−1, q ∈ C(Ω̄), 1 < q(x) < p∗(x)

F (x, t) ≤ c(1 + |t|γ(x)), γ ∈ C(Ω̄), 1 < γ− ≤ γ+ < p−
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]
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Existence of two distinct weak solutions
Existence of three weak solutions
Multiple solutions with discontinuous non linear term

1 < p− ≤ p+ < +∞

G. Bonanno and P. Candito,
J. Differential Equations 244 (2008), 3031–3059.

⇓

 −∆p(x)u = λ(f(x, u) + µg(x, u)) in Ω

u = 0 on ∂Ω
(Dλ,µ,f,g)

admits at least three weak solutions
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1 < p− ≤ p+ < +∞

H := {h : Ω× lR→ lR locally bounded : (m1), (m2), (m3) hold }

(m1) h(·, t) measurable for each t ∈ lR;

(m2) there exists Ω0 ⊆ Ω with m(Ω0) = 0 such that the set

Dh :=
⋃

x∈Ω\Ω0

{t ∈ lR : h(x, ·) is discontinuous at t}

has measure zero.

(m3) the functions

h−(x, z) := lim
δ→0+

ess inf |ξ−z|<δh(x, ξ), h+(x, z) := lim
δ→0+

ess sup |ξ−z|<δh(x, ξ)

are superpositionally measurable i.e. h−(·, u(·)) and h+(·, u(·)) are
measurable provided u : Ω→ lR is measurable too
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Existence of a non trivial weak solution
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Multiple solutions with discontinuous non linear term

1 < p− ≤ p+ < +∞

f, g ∈ H
q, q̄, γ ∈ C(Ω̄), 1 ≤ q(x) < p∗(x), 1 ≤ q̄(x) ≤ q̄+ < p−,
p+ < min{γ−, p∗−}:

0 ≤ f(x, t), g(x, t) ≤ c1(1 + |t|q(x)−1), ∀(x, t) ∈ Ω× lR;
0 ≤ f(x, t) ≤ c̄1(1 + tq̄(x)−1), ∀x ∈ Ω and t ≥ 0;

lim supt→0+ supx∈Ω
F (x,t)

tγ(x) < +∞;

∃h > 0: infx∈Ω F (x, h) > 0;

∀µ > 0, for a. e. x ∈ Ω and ∀t ∈ Df ∪Dg

(f + µg)−(x, t) ≤ 0 ≤ (f + µg)+(x, t) =⇒ (f + µg)(x, t) = 0
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Multiple solutions for Dirichlet problem
Multiple solutions for Neumann problem

Existence of a non trivial weak solution
Existence of two distinct weak solutions
Existence of three weak solutions
Multiple solutions with discontinuous non linear term

1 < p− ≤ p+ < +∞

Bonanno-C. - Math. Nachr. - (2011)

For each λ >
2

p−
(2N − 1)

[ 2h
τ ]p

infx∈Ω F (x, h)
, there exists δ > 0 such that,

for every µ ∈ [0, δ], the problem (Dλ,µ,f,g) admits at least three non
negative weak solutions.
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Multiple solutions for Dirichlet problem
Multiple solutions for Neumann problem

Existence of a non trivial weak solution
Existence of two distinct weak solutions
Existence of a non trivial weak solution with discontinuous non linear term

1 < p− ≤ p+ < +∞

Bonanno G.,
A critical point theorem via the Ekeland variational principle,
Nonlinear Analysis, 75 (2012), 2992–3007.

⇓


−∆p(x)u+ a(x)|u|p(x)−2u = λf(x, u) in Ω

∂u

∂ν
= 0 su ∂Ω

(Nλ,f )

admits at least a non trivial weak solution
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Multiple solutions for Dirichlet problem
Multiple solutions for Neumann problem

Existence of a non trivial weak solution
Existence of two distinct weak solutions
Existence of a non trivial weak solution with discontinuous non linear term

1 < p− ≤ p+ < +∞

Barletta-C. - Electronic Journal of Differential Equations - (2013)

f : Ω× lR→ lR is a Carathéodory function

there exist a1, a2 ∈]0,+∞[ e q ∈ C(Ω̄), 1 < q(x) < p∗(x) for each
x ∈ Ω̄ such that |f(x, t)| ≤ a1 + a2|t|q(x)−1 for each (x, t) ∈ Ω× lR

lim sup
t→0+

infx∈Ω F (x, t)

tp−
= +∞

=⇒ there exists λ∗ > 0 such that for every λ ∈]0, λ∗[ the problem (Nλ,f )
admits at least a non trivial weak solution.

λ∗ =
1

a1k̄1(p+)
1

p− + a2

q−

[
k̄q
]q

(p+)
q+

p−
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Multiple solutions for Dirichlet problem
Multiple solutions for Neumann problem

Existence of a non trivial weak solution
Existence of two distinct weak solutions
Existence of a non trivial weak solution with discontinuous non linear term

1 < p− ≤ p+ < +∞

Bonanno G.,
Relations between the mountain pass theorem and local minima,
Adv.Nonlinear Anal., 1 (2012), 205–220.

⇓


−∆p(x)u+ a(x)|u|p(x)−2u = λf(x, u) in Ω

∂u

∂ν
= 0 su ∂Ω

(Nλ,f )

admits at least two distinct weak solutions
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Barletta-C. - Electronic Journal of Differential Equations - (2013)

f : Ω× lR→ lR is a Carathéodory function

there exist a1, a2 ∈]0,+∞[ e q ∈ C(Ω̄), 1 < q(x) < p∗(x) for each
x ∈ Ω̄ such that |f(x, t)| ≤ a1 + a2|t|q(x)−1 for each (x, t) ∈ Ω× lR;

there exist µ > p+, β > 0 such that
0 < µF (x, ξ) ≤ ξf(x, ξ) per ogni x ∈ Ω, |ξ| ≥ β;

=⇒ there exists λ∗ > 0 such that for every λ ∈]0, λ∗[ the problem (Nλ,f )
admits at least two distinct weak solutions.

λ∗ =
1

a1k̄1(p+)
1

p− + a2

q−

[
k̄q
]q

(p+)
q+

p−
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Multiple solutions for Dirichlet problem
Multiple solutions for Neumann problem

Existence of a non trivial weak solution
Existence of two distinct weak solutions
Existence of a non trivial weak solution with discontinuous non linear term

1 < p− ≤ p+ < +∞

Bonanno G., D’Agùı G. and Winkert P.
Sturm-Liouville equations involving discontinuous nonlinearities,
Minimax Theory and its Applications, 01, 1 (2015).

⇓


−∆p(x)u+ a(x)|u|p(x)−2u = λf(x, u) in Ω

∂u

∂ν
= 0 on ∂Ω

(Nλ,a)

admits at least a non trivial weak solution
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Bonanno G., D’Agùı G. and Winkert P.
Sturm-Liouville equations involving discontinuous nonlinearities,
Minimax Theory and its Applications, 01, 1 (2015).

⇓


−∆p(x)u+ a(x)|u|p(x)−2u = λf(x, u) in Ω

∂u

∂ν
= 0 on ∂Ω

(Nλ,a)

admits at least a non trivial weak solution
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Multiple solutions for Dirichlet problem
Multiple solutions for Neumann problem

Existence of a non trivial weak solution
Existence of two distinct weak solutions
Existence of a non trivial weak solution with discontinuous non linear term

1 < p− ≤ p+ < +∞
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(f2) there exist a1, a2 ∈ [0,+∞[ and q ∈ C(Ω̄) with 1 < q(x) < p∗(x) for each
x ∈ Ω̄, such that

|f(x, t)| ≤ a1 + a2|t|q(x)−1
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∫
Ω
F (x, t) dx

tp−
= +∞.

=⇒ there exists λ∗ > 0 such that for every λ ∈]0, λ∗[ the problem (Nλ,a)
admits at least one non trivial weak solution.
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Antonia Chinǹı (University of Messina) Applications of critical points results to existence and multiplicity of solutions for elliptic problems with variable exponentDiffEqApp 45/47



Obtained results
Abstract results

Variable exponent Lebesgue, Sobolev spaces

Bonanno G.,

A critical point theorem via the Ekeland variational principle,

Nonlinear Analysis, 75 (2012), 2992–3007.

Bonanno G.,

Relations between the mountain pass theorem and local minima,

Adv.Nonlinear Anal., 1 (2012), 205–220.

Bonanno G. and Marano S. A.,

On the structure of the critical set of non-differentiable functions with a
weak compactness condition,

Appl. Anal., 89 (2010), 1–10.
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