Applications of critical points results to existence and multiplicity of solutions for elliptic problems with variable exponent

Antonia Chinnì

University of Messina (Italy) Department of Engineering

Differential Equations and Applications Brno, Czech Republic September 4 - 7, 2017

$$-\Delta_{p(x)}u = \lambda f(x, u)$$

$$\Delta_{p(x)}u := div(|\nabla u|^{p(x)-2}\nabla u)$$

- electrorheological fluids
 - Ružička (1999, 2000), Acerbi-Mingione (2002), Acerbi-Mingione-Seregin (2004)
- thermorheological fluids
 - Antontsev-Rodrigues (2006)
- image restoration
 - Levine (2005), Aboulaich-Meskine-Souissi (2008)

$$-\Delta_{p(x)}u = \lambda f(x, u)$$

$$\Delta_{p(x)}u := div(|\nabla u|^{p(x)-2}\nabla u)$$

- electrorheological fluids
 - Ružička (1999, 2000), Acerbi-Mingione (2002), Acerbi-Mingione-Seregin (2004)
- thermorheological fluids
 - Antontsev-Rodrigues (2006)
- image restoration
 - Levine (2005), Aboulaich-Meskine-Souissi (2008)

$$-\Delta_{p(x)}u = \lambda f(x, u)$$

$$\Delta_{p(x)}u := div(|\nabla u|^{p(x)-2}\nabla u)$$

- electrorheological fluids
 - Ružička (1999, 2000), Acerbi-Mingione (2002), Acerbi-Mingione-Seregin (2004)
- thermorheological fluids
 - Antontsev-Rodrigues (2006)
- image restoration
 - Levine (2005), Aboulaich-Meskine-Souissi (2008)

$$-\Delta_{p(x)}u = \lambda f(x, u)$$

$$\Delta_{p(x)}u := div(|\nabla u|^{p(x)-2}\nabla u)$$

electrorheological fluids

- Ružička (1999, 2000), Acerbi-Mingione (2002), Acerbi-Mingione-Seregin (2004)
- thermorheological fluids
 - Antontsev-Rodrigues (2006)
- image restoration
 - Levine (2005), Aboulaich-Meskine-Souissi (2008)

$$-\Delta_{p(x)}u = \lambda f(x, u)$$

$$\Delta_{p(x)}u := div(|\nabla u|^{p(x)-2}\nabla u)$$

- electrorheological fluids
 - Ružička (1999, 2000), Acerbi-Mingione (2002), Acerbi-Mingione-Seregin (2004)
- thermorheological fluids
 - Antontsev-Rodrigues (2006)
- image restoration
 - Levine (2005), Aboulaich-Meskine-Souissi (2008)

$W^{1,p(x)}(\Omega)$

Diening L., Harjulehto P., Hästö P. and Ružicka M. Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017 (2011), Springer-Verlag

Cruz-Uribe D., Fiorenza A

Variable Lebesgue Spaces: Foundations and Harmonic Analysis, (2013), Birkhauser

Research group on variable exponent Lebesgue and Sobolev spaces www.helsinki.fi/ pharjule/varsob/links.shtml

$W^{1,p(x)}(\Omega)$

Diening L., Harjulehto P., Hästö P. and Ružicka M. Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017 (2011), Springer-Verlag

Cruz-Uribe D., Fiorenza A.

Variable Lebesgue Spaces: Foundations and Harmonic Analysis, (2013), Birkhauser

Research group on variable exponent Lebesgue and Sobolev spaces www.helsinki.fi/ pharjule/varsob/links.shtml

$W^{1,p(x)}(\Omega)$

Diening L., Harjulehto P., Hästö P. and Ružicka M. Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017 (2011), Springer-Verlag

Cruz-Uribe D., Fiorenza A.

Variable Lebesgue Spaces: Foundations and Harmonic Analysis, (2013), Birkhauser

Research group on variable exponent Lebesgue and Sobolev spaces www.helsinki.fi/ pharjule/varsob/links.shtml

DiffEq[&]An

$$\Omega \subset {\rm I\!R}^N$$
 open, bounded, $p \in C(\bar{\Omega})$

$$1 < p^- := \inf_{x \in \Omega} p(x) \le p(x) \le p^+ := \sup_{x \in \Omega} p(x) < +\infty$$

$$\begin{split} L^{p(x)}(\Omega) &:= \left\{ u: \Omega \to \mathbb{R} : u \text{ measurable}, \rho_p(u) := \int_{\Omega} |u(x)|^{p(x)} dx < +\infty \right\} \\ \|u\|_{L^{p(x)}(\Omega)} &:= \inf \left\{ \lambda > 0 : \int_{\Omega} \left| \frac{u(x)}{\lambda} \right|^{p(x)} dx \le 1 \right\} \end{split}$$

 $\Omega \subset {\rm I\!R}^N$ open, bounded, $p \in C(\bar{\Omega})$

$$1 < p^- := \inf_{x \in \Omega} p(x) \le p(x) \le p^+ := \sup_{x \in \Omega} p(x) < +\infty$$

$$L^{p(x)}(\Omega) := \left\{ u : \Omega \to \mathbb{R} : u \text{ measurable}, \rho_p(u) := \int_{\Omega} |u(x)|^{p(x)} dx < +\infty \right\}$$
$$\||u\|_{L^{p(x)}(\Omega)} := \inf \left\{ \lambda > 0 : \int_{\Omega} \left| \frac{u(x)}{\lambda} \right|^{p(x)} dx \le 1 \right\}$$

$$\Omega \subset {\rm I\!R}^N$$
 open, bounded, $p \in C(\bar{\Omega})$

$$1 < p^- := \inf_{x \in \Omega} p(x) \le p(x) \le p^+ := \sup_{x \in \Omega} p(x) < +\infty$$

$$\begin{split} L^{p(x)}(\Omega) &:= \left\{ u: \Omega \to \mathbb{R} : u \text{ measurable}, \rho_p(u) := \int_{\Omega} |u(x)|^{p(x)} dx < +\infty \right\} \\ &\|u\|_{L^{p(x)}(\Omega)} := \inf \left\{ \lambda > 0 : \int_{\Omega} \left| \frac{u(x)}{\lambda} \right|^{p(x)} dx \le 1 \right\} \end{split}$$

DiffEq[&]App

4/47

$$W^{1,p(x)}(\Omega) := \left\{ u \in L^{p(x)}(\Omega) : |\nabla u| \in L^{p(x)}(\Omega) \right\}$$

$$||u||_{W^{1,p(x)}(\Omega)} := ||u||_{L^{p(x)}(\Omega)} + |||\nabla u|||_{L^{p(x)}(\Omega)}$$

$$W_0^{1,p(x)}(\Omega) := \overline{C_0^{\infty}(\Omega)}^{W^{1,p(x)}(\Omega)}$$

$$||u|| := |||\nabla u|||_{L^{p(x)}(\Omega)}$$

 $L^{p(x)}(\Omega)$, $W^{1,p(x)}(\Omega)$ and $W^{1,p(x)}_0(\Omega)$ are separable, reflexive and uniformly convex Banach spaces.

$$W^{1,p(x)}(\Omega) := \left\{ u \in L^{p(x)}(\Omega) : |\nabla u| \in L^{p(x)}(\Omega) \right\}$$

$$||u||_{W^{1,p(x)}(\Omega)} := ||u||_{L^{p(x)}(\Omega)} + |||\nabla u|||_{L^{p(x)}(\Omega)}$$

$$W_0^{1,p(x)}(\Omega) := \overline{C_0^{\infty}(\Omega)}^{W^{1,p(x)}(\Omega)}$$

$$||u|| := |||\nabla u|||_{L^{p(x)}(\Omega)}$$

 $L^{p(x)}(\Omega)$, $W^{1,p(x)}(\Omega)$ and $W^{1,p(x)}_0(\Omega)$ are separable, reflexive and uniformly convex Banach spaces.

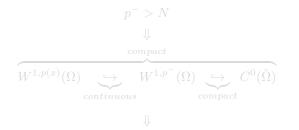
$$W^{1,p(x)}(\Omega) := \left\{ u \in L^{p(x)}(\Omega) : |\nabla u| \in L^{p(x)}(\Omega) \right\}$$

$$||u||_{W^{1,p(x)}(\Omega)} := ||u||_{L^{p(x)}(\Omega)} + |||\nabla u|||_{L^{p(x)}(\Omega)}$$

$$W_0^{1,p(x)}(\Omega) := \overline{C_0^{\infty}(\Omega)}^{W^{1,p(x)}(\Omega)}$$

$$||u|| := |||\nabla u|||_{L^{p(x)}(\Omega)}$$

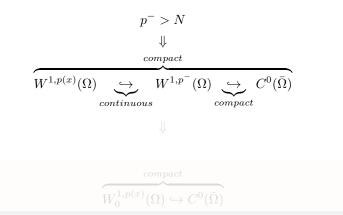
 $L^{p(x)}(\Omega),$ $W^{1,p(x)}(\Omega)$ and $W^{1,p(x)}_0(\Omega)$ are separable, reflexive and uniformly convex Banach spaces.



there exists $c_0 > 0$ such that

 $\|u\|_{C^0(\bar{\Omega})} \le c_0 \|u\|_{W_0^{1,p(x)}(\Omega)}$

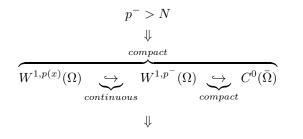
6/47

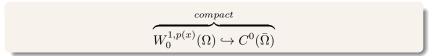


there exists $c_0 > 0$ such that

 $\|u\|_{C^0(\bar{\Omega})} \le c_0 \|u\|_{W_0^{1,p(x)}(\Omega)}$

6/47

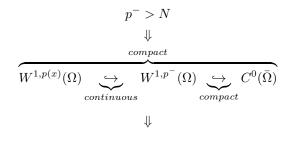




there exists $c_0 > 0$ such that

 $\|u\|_{C^0(\bar{\Omega})} \le c_0 \|u\|_{W_0^{1,p(x)}(\Omega)}$

6/47





there exists $c_0 > 0$ such that

$$\|u\|_{C^0(\bar{\Omega})} \leq c_0 \|u\|_{W^{1,p(x)}_0(\Omega)} \qquad \qquad \mathrm{DiffEq[\&]Approximation of the set of$$

 $p^- > N$ estimate of constant for embedding $W_0^{1,p(x)}(\Omega) \hookrightarrow C^0(\overline{\Omega})$

Bonanno-C. -Complex Var. Elliptic Equ.-(2012)

 $c_0 \le k_{p^-}(|\Omega|+1)$

$$W_0^{1,p(x)}(\Omega) \underset{|\Omega|+1}{\hookrightarrow} W_0^{1,p^-}(\Omega) \underset{k_{p^-}}{\hookrightarrow} C^0(\bar{\Omega})$$
$$N^{-\frac{1}{p^-}} \left[\left(N \right) \right]^{\frac{1}{N}} \left(p^- - 1 \right)^{1-\frac{1}{p^-}}$$

$$r_{p^-} \leq \frac{m}{\sqrt{\pi}} \left[\Gamma\left(1 + \frac{m}{2}\right) \right] \quad \left(\frac{p^- - 1}{p^- - N}\right) \quad P \quad |\Omega|^{\frac{1}{N} - \frac{1}{p^-}}$$

 $p^- > N$ estimate of constant for embedding $W_0^{1,p(x)}(\Omega) \hookrightarrow C^0(\overline{\Omega})$

Bonanno-C. -Complex Var. Elliptic Equ.-(2012)

 $c_0 \le k_{p^-}(|\Omega|+1)$

$$W_0^{1,p(x)}(\Omega) \underset{|\Omega|+1}{\hookrightarrow} W_0^{1,p^-}(\Omega) \underset{k_{p^-}}{\hookrightarrow} C^0(\bar{\Omega})$$
$$k_{p^-} \le \frac{N^{-\frac{1}{p^-}}}{\sqrt{\pi}} \left[\Gamma\left(1+\frac{N}{2}\right) \right]^{\frac{1}{N}} \left(\frac{p^--1}{p^--N}\right)^{1-\frac{1}{p^-}} |\Omega|^{\frac{1}{N}-\frac{1}{p^-}}$$

 $p^- > N$ estimate of constant for embedding $W_0^{1,p(x)}(\Omega) \hookrightarrow C^0(\overline{\Omega})$

Bonanno-C. -Complex Var. Elliptic Equ.-(2012)

 $c_0 \le k_{p^-}(|\Omega|+1)$

$$W_0^{1,p(x)}(\Omega) \underbrace{\hookrightarrow}_{|\Omega|+1} W_0^{1,p^-}(\Omega) \underbrace{\hookrightarrow}_{k_{p^-}} C^0(\bar{\Omega})$$
$$k_{p^-} \le \frac{N^{-\frac{1}{p^-}}}{\sqrt{\pi}} \left[\Gamma\left(1+\frac{N}{2}\right) \right]^{\frac{1}{N}} \left(\frac{p^--1}{p^--N}\right)^{1-\frac{1}{p^-}} |\Omega|^{\frac{1}{N}-\frac{1}{p^-}}$$

 $p^- > N$ estimate of constant for embedding $W_0^{1,p(x)}(\Omega) \hookrightarrow C^0(\overline{\Omega})$

Bonanno-C. -Complex Var. Elliptic Equ.-(2012)

 $c_0 \le k_{p^-}(|\Omega|+1)$

$$W_0^{1,p(x)}(\Omega) \underbrace{\hookrightarrow}_{|\Omega|+1} W_0^{1,p^-}(\Omega) \underbrace{\hookrightarrow}_{k_{p^-}} C^0(\bar{\Omega})$$
$$k_{p^-} \le \frac{N^{-\frac{1}{p^-}}}{\sqrt{\pi}} \left[\Gamma\left(1+\frac{N}{2}\right) \right]^{\frac{1}{N}} \left(\frac{p^--1}{p^--N}\right)^{1-\frac{1}{p^-}} |\Omega|^{\frac{1}{N}-\frac{1}{p^-}}$$

 $p^- > N$ estimate of constant for embedding $W_0^{1,p(x)}(\Omega) \hookrightarrow C^0(\overline{\Omega})$ with respect $\|\cdot\|_a$

$$||u||_{W_0^{1,p(x)}} := \inf \left\{ \sigma > 0 : \int_{\Omega} \left| \frac{\nabla u(x)}{\sigma} \right|^{p(x)} dx \le 1 \right\}$$

 $\|\cdot\|$ is equivalent to $\|\cdot\|_a$

$$\|u\|_{a} = \inf\left\{\sigma > 0: \int_{\Omega} \left(\left|\frac{\nabla u(x)}{\sigma}\right|^{p(x)} + a(x)\left|\frac{u(x)}{\sigma}\right|^{p(x)}\right) dx \le 1\right\}$$

$$c_0^* \le k_{p-}(|\Omega|+1) \frac{[a_-]_{1/p}+1}{[a_-]_{1/p}}$$

$$\|u\|_{W_0^{1,p(x)}} \le \|u\|_{W^{1,p(x)}} \le \frac{[a_-]_{1/p} + 1}{[a_-]_{1/p}} \|u\|_a$$

 $p^- > N$ estimate of constant for embedding $W_0^{1,p(x)}(\Omega) \hookrightarrow C^0(\overline{\Omega})$ with respect $\|\cdot\|_a$

$$\|u\|_{W_0^{1,p(x)}} := \inf\left\{\sigma > 0: \int_{\Omega} \left|\frac{\nabla u(x)}{\sigma}\right|^{p(x)} dx \le 1\right\}$$

 $\|\cdot\|$ is equivalent to $\|\cdot\|_a$

$$\|u\|_{a} = \inf\left\{\sigma > 0: \int_{\Omega} \left(\left|\frac{\nabla u(x)}{\sigma}\right|^{p(x)} + a(x)\left|\frac{u(x)}{\sigma}\right|^{p(x)}\right) dx \le 1\right\}$$

$$c_0^* \le k_{p-}(|\Omega|+1) \frac{[a_-]_{1/p}+1}{[a_-]_{1/p}}$$

$$\|u\|_{W_0^{1,p(x)}} \le \|u\|_{W^{1,p(x)}} \le \frac{[a_-]_{1/p} + 1}{[a_-]_{1/p}} \|u\|_a$$

 $p^- > N$ estimate of constant for embedding $W_0^{1,p(x)}(\Omega) \hookrightarrow C^0(\overline{\Omega})$ with respect $\|\cdot\|_a$

$$\|u\|_{W_0^{1,p(x)}} := \inf\left\{\sigma > 0: \int_{\Omega} \left|\frac{\nabla u(x)}{\sigma}\right|^{p(x)} dx \le 1\right\}$$

 $\|\cdot\|$ is equivalent to $\|\cdot\|_a$

$$\|u\|_{a} = \inf\left\{\sigma > 0: \int_{\Omega} \left(\left|\frac{\nabla u(x)}{\sigma}\right|^{p(x)} + a(x)\left|\frac{u(x)}{\sigma}\right|^{p(x)}\right) dx \le 1\right\}$$

$$c_0^* \le k_{p-}(|\Omega|+1) \frac{[a_-]_{1/p}+1}{[a_-]_{1/p}}$$

$$\|u\|_{W_0^{1,p(x)}} \le \|u\|_{W^{1,p(x)}} \le \frac{[a_-]_{1/p}+1}{[a_-]_{1/p}} \|u\|_{c}$$

 $p^- > N$ estimate of constant for embedding $W_0^{1,p(x)}(\Omega) \hookrightarrow C^0(\overline{\Omega})$ with respect $\|\cdot\|_a$

$$\|u\|_{W_0^{1,p(x)}} := \inf\left\{\sigma > 0: \int_{\Omega} \left|\frac{\nabla u(x)}{\sigma}\right|^{p(x)} dx \le 1\right\}$$

 $\|\cdot\|$ is equivalent to $\|\cdot\|_a$

$$\|u\|_{a} = \inf\left\{\sigma > 0: \int_{\Omega} \left(\left|\frac{\nabla u(x)}{\sigma}\right|^{p(x)} + a(x)\left|\frac{u(x)}{\sigma}\right|^{p(x)}\right) dx \le 1\right\}$$

$$c_0^* \le k_{p-}(|\Omega|+1) \frac{[a_-]_{1/p}+1}{[a_-]_{1/p}}$$

$$\|u\|_{W_0^{1,p(x)}} \le \|u\|_{W^{1,p(x)}} \le \frac{[a_-]_{1/p} + 1}{[a_-]_{1/p}} \|u\|_a$$

$1 < p^- \le p^+ < +\infty$

Embedding's theorem

If $p \in C(\bar{\Omega})$ with p(x) > 1 for each $x \in \bar{\Omega}$ and $q \in C(\bar{\Omega})$ with

$$1 < q(x) < p^*(x) := \begin{cases} \frac{Np(x)}{N-p(x)} & \text{if } p(x) < N\\ \infty & \text{if } p(x) \ge N \end{cases}$$

for all $x \in \Omega$, then there exists a compact embedding

$$W^{1,p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$$

$1 < p^- \le p^+ < +\infty$

Embedding's theorem

If $p\in C(\bar{\Omega})$ with p(x)>1 for each $x\in\bar{\Omega}$ and $q\in C(\bar{\Omega})$ with

$$1 < q(x) < p^{*}(x) := \begin{cases} \frac{Np(x)}{N-p(x)} & \text{if } p(x) < N\\ \infty & \text{if } p(x) \ge N \end{cases}$$

for all $x \in \Omega$, then there exists a compact embedding

 $W^{1,p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$

$1 < p^- \le p^+ < +\infty$

Embedding's theorem

If $p\in C(\bar{\Omega})$ with p(x)>1 for each $x\in\bar{\Omega}$ and $q\in C(\bar{\Omega})$ with

$$1 < q(x) < p^{*}(x) := \begin{cases} \frac{Np(x)}{N-p(x)} & \text{if } p(x) < N\\ \infty & \text{if } p(x) \ge N \end{cases}$$

for all $x \in \Omega$, then there exists a compact embedding

$$W^{1,p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$$

$1 < p^- \leq p^+ < +\infty$, estimate of constant for embedding $W_0^{1,p(x)}(\Omega) \hookrightarrow L^1(\Omega)$

$p^- < N$, Bonanno-C. -J.M.A.A.-(2014)

$$k_1 \le c_{p^{-*}} |\Omega|^{\frac{p^{-*}-1}{p^{-*}}} (|\Omega|+1)$$

$$W_0^{1,p(x)}(\Omega) \underset{|\Omega|+1}{\hookrightarrow} W_0^{1,p^-}(\Omega) \underset{c_{p^{-*}} \in |\Omega|}{\hookrightarrow} L^1(\Omega)$$

• $c_{p^{-*}}$ is the constant of the continuous embedding $W_0^{1,p^-}(\Omega) \hookrightarrow L^{p^{-*}}(\Omega)$

$$c_{p^{-*}} = \frac{1}{\sqrt{\pi}} \frac{1}{N^{\frac{1}{p^{-}}}} \left(\frac{p^{-}-1}{N-p^{-}}\right)^{1-\frac{1}{p^{-}}} \left[\frac{\Gamma(1+\frac{N}{2})\Gamma(N)}{\Gamma(\frac{N}{p^{-}})\Gamma(1+N-\frac{N}{p^{-}})}\right]^{\frac{1}{N}}$$

]App

$1 < p^- \leq p^+ < +\infty$, estimate of constant for embedding $W_0^{1,p(x)}(\Omega) \hookrightarrow L^1(\Omega)$

$p^- < N$, Bonanno-C. -J.M.A.A.-(2014)

$$k_1 \le c_{p^{-*}} |\Omega|^{\frac{p^{-*}-1}{p^{-*}}} (|\Omega|+1)$$

$$W_0^{1,p(x)}(\Omega) \underset{|\Omega|+1}{\hookrightarrow} W_0^{1,p^-}(\Omega) \underset{c_{p^{-*}} = |\Omega|}{\hookrightarrow} L^1(\Omega)$$

• $c_{p^{-*}}$ is the constant of the continuous embedding $W_0^{1,p^-}(\Omega) \hookrightarrow L^{p^{-*}}(\Omega)$

$$c_{p^{-*}} = \frac{1}{\sqrt{\pi}} \frac{1}{N^{\frac{1}{p^{-}}}} \left(\frac{p^{-} - 1}{N - p^{-}}\right)^{1 - \frac{1}{p^{-}}} \left[\frac{\Gamma(1 + \frac{N}{2})\Gamma(N)}{\Gamma(\frac{N}{p^{-}})\Gamma(1 + N - \frac{N}{p^{-}})}\right]^{\frac{1}{N}}$$

]App

 $1 < p^- \leq p^+ < +\infty$, estimate of constant for embedding $W_0^{1,p(x)}(\Omega) \hookrightarrow L^1(\Omega)$

$p^- < N$, Bonanno-C. -J.M.A.A.-(2014)

$$k_1 \le c_{p^{-*}} |\Omega|^{\frac{p^{-*}-1}{p^{-*}}} (|\Omega|+1)$$

$$W_0^{1,p(x)}(\Omega) \underbrace{\hookrightarrow}_{|\Omega|+1} W_0^{1,p^-}(\Omega) \underbrace{\hookrightarrow}_{c_{n^{-*}}|\Omega|^{\frac{p^{-*}-1}{p^{-*}}}} L^1(\Omega)$$

• $c_{p^{-*}}$ is the constant of the continuous embedding $W_0^{1,p^-}(\Omega) \hookrightarrow L^{p^{-*}}(\Omega)$

$$c_{p^{-*}} = \frac{1}{\sqrt{\pi}} \frac{1}{N^{\frac{1}{p^{-}}}} \left(\frac{p^{-}-1}{N-p^{-}}\right)^{1-\frac{1}{p^{-}}} \left[\frac{\Gamma(1+\frac{N}{2})\Gamma(N)}{\Gamma(\frac{N}{p^{-}})\Gamma(1+N-\frac{N}{p^{-}})}\right]^{\frac{1}{N}}$$

]App

 $1 < p^- \leq p^+ < +\infty$, estimate of constant for embedding $W_0^{1,p(x)}(\Omega) \hookrightarrow L^1(\Omega)$

$p^- < N$, Bonanno-C. -J.M.A.A.-(2014)

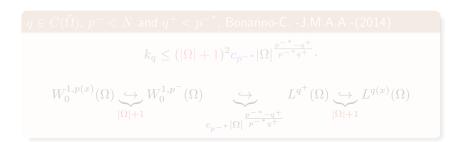
$$k_1 \le c_{p^{-*}} |\Omega|^{\frac{p^{-*}-1}{p^{-*}}} (|\Omega|+1)$$

$$W_0^{1,p(x)}(\Omega) \underset{|\Omega|+1}{\hookrightarrow} W_0^{1,p^-}(\Omega) \underset{c_{p^{-*}} * |\Omega| \xrightarrow{p^{-*}-1}}{\hookrightarrow} L^1(\Omega)$$

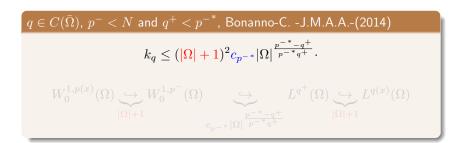
• $c_{p^{-*}}$ is the constant of the continuous embedding $W_0^{1,p^-}(\Omega) \hookrightarrow L^{p^{-*}}(\Omega)$

$$c_{p^{-*}} = \frac{1}{\sqrt{\pi}} \frac{1}{N^{\frac{1}{p^{-}}}} \left(\frac{p^{-} - 1}{N - p^{-}}\right)^{1 - \frac{1}{p^{-}}} \left[\frac{\Gamma(1 + \frac{N}{2})\Gamma(N)}{\Gamma(\frac{N}{p^{-}})\Gamma(1 + N - \frac{N}{p^{-}})}\right]^{\frac{1}{N}}$$
[App

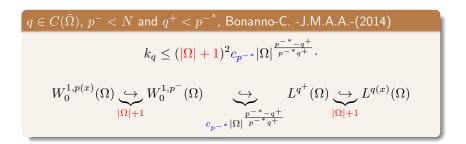
$1 < p^{-} \leq p^{+} < +\infty$, estimate of constant for embedding $W_{0}^{1,p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$



 $1 < p^{-} \leq p^{+} < +\infty$, estimate of constant for embedding $W_{0}^{1,p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$



 $1 < p^- \leq p^+ < +\infty$, estimate of constant for embedding $W_0^{1,p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$



11/47

$1 < p^- \le p^+ < +\infty$, estimate of constant for embedding $(W^{1,p(x)}(\Omega), \|\cdot\|_a) \hookrightarrow L^1(\Omega)$

$$\begin{split} \Omega \text{ open and convex and } p^- \neq N, \text{ Barletta-C. -E.J.D.E.-(2013)} \\ \bar{k}_1 \leq \tilde{k}_{p^-,1}(1+|\Omega|)(1+\|a\|_{\infty})^{\frac{1}{p^-}} \frac{1+[a_-]_{\frac{1}{p}}}{[a_-]_{\frac{1}{p}}} \\ (W^{1,p(x)}, \|\cdot\|_a)(\Omega) & \longleftrightarrow \\ (|\Omega|+1)(1+\|a\|_{\infty})^{1/p^-} \frac{[a_-]_{1/p}+1}{[a_-]_{1/p}} \\ (W^{1,p^-}, \|\cdot\|_a)(\Omega) & \longleftrightarrow \\ \bar{k}_{p^-,1} \text{ is the embedding's constant} \\ (W^{1,p^-}(\Omega), \|\cdot\|_a) \hookrightarrow L^1(\Omega) \end{split}$$

$1 < p^- \le p^+ < +\infty$, estimate of constant for embedding $(W^{1,p(x)}(\Omega), \|\cdot\|_a) \hookrightarrow L^1(\Omega)$

$$\begin{split} &\Omega \text{ open and convex and } p^- \neq N, \text{ Barletta-C. -E.J.D.E.-(2013)} \\ &\bar{k_1} \leq \tilde{k}_{p^-,1} (1+|\Omega|) (1+\|a\|_{\infty})^{\frac{1}{p^-}} \frac{1+[a_-]_{\frac{1}{p}}}{[a_-]_{\frac{1}{p}}} \\ &(W^{1,p(x)}, \|\cdot\|_a)(\Omega) \xrightarrow{\hookrightarrow} (W^{1,p^-}, \|\cdot\|_a)(\Omega) \xrightarrow{\hookrightarrow} L^1(\Omega) \\ &(|\Omega|+1)(1+\|a\|_{\infty})^{1/p^-} \frac{[a_-]_{1/p}+1}{[a_-]_{1/p}} \\ &\bullet \ \tilde{k}_{p^-,1} \text{ is the embedding's constant} \\ &(W^{1,p^-}(\Omega), \|\cdot\|_a) \hookrightarrow L^1(\Omega) \end{split}$$

]App

$1 < p^- \le p^+ < +\infty$, estimate of constant for embedding $(W^{1,p(x)}(\Omega), \|\cdot\|_a) \hookrightarrow L^1(\Omega)$

$$\begin{split} \Omega \text{ open and convex and } p^- \neq N, \text{ Barletta-C. -E.J.D.E.-(2013)} \\ \bar{k}_1 \leq \tilde{k}_{p^-,1} (1+|\Omega|) (1+\|a\|_{\infty})^{\frac{1}{p^-}} \frac{1+[a_-]_{\frac{1}{p}}}{[a_-]_{\frac{1}{p}}} \\ (W^{1,p(x)}, \|\cdot\|_a) (\Omega) & \underset{(|\Omega|+1)(1+\|a\|_{\infty})^{1/p^-} \frac{[a_-]_{1/p}+1}{[a_-]_{1/p}}}{(W^{1,p^-}, \|\cdot\|_a)(\Omega)} \underset{\tilde{k}_{p^-,1}}{\hookrightarrow} L^1(\Omega) \\ \bullet \ \bar{k}_{p^-,1} \text{ is the embedding's constant} \\ & (W^{1,p^-}(\Omega), \|\cdot\|_a) \hookrightarrow L^1(\Omega) \end{split}$$

]App

 $1 < p^- \le p^+ < +\infty$, estimate of constant for embedding $(W^{1,p(x)}(\Omega), \|\cdot\|_a) \hookrightarrow L^1(\Omega)$

$$\begin{split} &\Omega \text{ open and convex and } p^- \neq N, \text{ Barletta-C. -E.J.D.E.-(2013)} \\ &\bar{k}_1 \leq \tilde{k}_{p^-,1} (1+|\Omega|) (1+\|a\|_{\infty})^{\frac{1}{p^-}} \frac{1+[a_-]_{\frac{1}{p}}}{[a_-]_{\frac{1}{p}}} \\ &(W^{1,p(x)}, \|\cdot\|_a)(\Omega) \underbrace{\hookrightarrow}_{(|\Omega|+1)(1+\|a\|_{\infty})^{1/p^-} \frac{[a_-]_{1/p}+1}{[a_-]_{1/p}}} (W^{1,p^-}, \|\cdot\|_a)(\Omega) \underbrace{\leftrightarrow}_{\tilde{k}_{p^-,1}} L^1(\Omega) \\ &\bullet \tilde{k}_{p^-,1} \text{ is the embedding's constant} \\ &(W^{1,p^-}(\Omega), \|\cdot\|_a) \hookrightarrow L^1(\Omega) \end{split}$$

 $q\in C(\bar{\Omega})$ and $q^+ < p^{-*}$, Ω open and convex and $p^-
eq N$, Barletta-C. -E.J.D.E.-(2013)

$$\bar{k_q} \le \tilde{k}_{p^-,q^+} (1+|\Omega|)^2 (1+||a||_{\infty})^{\frac{1}{p^-}} \frac{1+[a_-]_{\frac{1}{p}}}{[a_-]_{\frac{1}{p}}}$$

$$W^{1,p(x)}(\Omega) \underbrace{\hookrightarrow}_{(|\Omega|+1)(1+\|a\|_{\infty})^{1/p^{-}}\frac{[a_{-}]_{1/p}+1}{[a_{-}]_{1/p}}} W^{1,p^{-}}(\Omega) \underbrace{\hookrightarrow}_{\tilde{k}_{p^{-},q^{+}}} L^{q^{+}}(\Omega) \underbrace{\hookrightarrow}_{|\Omega|+1} L^{q(x)}(\Omega)$$

• \tilde{k}_{p^-,q^+} is the constant for embedding

$$(W^{1,p^{-}}(\Omega), \|\cdot\|_a) \hookrightarrow L^{q^{+}}(\Omega)$$

ADD

 $q \in C(\overline{\Omega})$ and $q^+ < p^{-*}$, Ω open and convex and $p^- \neq N$, Barletta-C. -E.J.D.E.-(2013) $\bar{k_q} \le \tilde{k}_{p^-,q^+} (1+|\Omega|)^2 (1+||a||_{\infty})^{\frac{1}{p^-}} \frac{1+|a_-|_{\frac{1}{p}}}{[a_-]_1}$ $\underbrace{\hookrightarrow}_{(|\Omega|+1)(1+\|a\|_{\infty})^{1/p^{-}}\frac{[a_{-}]_{1/p}+1}{[a_{-}]_{1/p}}}W^{1,p^{-}}(\Omega)\underbrace{\hookrightarrow}_{\tilde{k}_{p^{-},q^{+}}}L^{q^{+}}(\Omega)\underbrace{\hookrightarrow}_{|\Omega|+1}L^{q(s)}(\Omega)$.]App

 $q \in C(\overline{\Omega})$ and $q^+ < p^{-*}$, Ω open and convex and $p^- \neq N$, Barletta-C. -E.J.D.E.-(2013) $\bar{k_q} \le \tilde{k}_{p^-,q^+} (1+|\Omega|)^2 (1+||a||_{\infty})^{\frac{1}{p^-}} \frac{1+|a_-|_{\frac{1}{p}}}{|a_-|_1}$ $W^{1,p^{-}}(\Omega) \underset{\tilde{k}_{p^{-},q^{+}}}{\hookrightarrow} L^{q^{+}}(\Omega) \underset{|\Omega|+1}{\hookrightarrow} L^{q(x)}(\Omega)$ $W^{1,p(x)}(\Omega)$ $(|\Omega|+1)(1+||a||_{\infty})^{1/p} - \frac{[a_{-}]_{1/p}+1}{[a_{-}]_{1/p}}$.]App

 $q \in C(\overline{\Omega})$ and $q^+ < p^{-*}$, Ω open and convex and $p^- \neq N$, Barletta-C. -E.J.D.E.-(2013) $\bar{k_q} \le \tilde{k}_{p^-,q^+} (1+|\Omega|)^2 (1+||a||_{\infty})^{\frac{1}{p^-}} \frac{1+|a_-|_{\frac{1}{p}}}{|a_-|_1}$ $W^{1,p^{-}}(\Omega) \underset{\tilde{k}_{-}-,r^{+}}{\hookrightarrow} L^{q^{+}}(\Omega) \underset{|\Omega|+1}{\hookrightarrow} L^{q(x)}(\Omega)$ $W^{1,p(x)}(\Omega)$ $\tilde{k}_{p-,g+}$ $(|\Omega|+1)(1+||a||_{\infty})^{1/p} - \frac{[a_{-}]_{1/p}+1}{[a_{-}]_{1/p}}$ • $k_{p^-} a^+$ is the constant for embedding $(W^{1,p^{-}}(\Omega), \|\cdot\|_{a}) \hookrightarrow L^{q^{+}}(\Omega)$.App

 $q \in C(\overline{\Omega})$ and $q^+ < p^{-*}$, Ω open and convex and $p^- \neq N$, Barletta-C. -E.J.D.E.-(2013) $\bar{k_q} \le \tilde{k}_{p^-,q^+} (1+|\Omega|)^2 (1+||a||_{\infty})^{\frac{1}{p^-}} \frac{1+|a_-|_{\frac{1}{p}}}{|a_-|_1}$ $W^{1,p^{-}}(\Omega) \underset{\tilde{k}_{p^{-},q^{+}}}{\hookrightarrow} L^{q^{+}}(\Omega) \underset{|\Omega|+1}{\hookrightarrow} L^{q(x)}(\Omega)$ $W^{1,p(x)}(\Omega)$ $(|\Omega|+1)(1+||a||_{\infty})^{1/p} - \frac{[a_{-}]_{1/p}+1}{[a_{-}]_{1/p}}$ • $k_{p^-} a^+$ is the constant for embedding $(W^{1,p^{-}}(\Omega), \|\cdot\|_{a}) \hookrightarrow L^{q^{+}}(\Omega)$.]App

The problems

• $p^- > N$

- Dirichlet problem
 - multiple solutions
 - infinitely many solutions
- Neumann-type differential inclusion
 - multiple solutions
- $1 < p^- \le p^+ < +\infty$
 - Dirichlet problem
 - multiple solutions
 - Neumann problem
 - multiple solutions

precise interval of parameters Λ

The problems

${\small \circ } \ p^- > N$

- Dirichlet problem
 - multiple solutions
 - infinitely many solutions
- Neumann-type differential inclusion
 - multiple solutions
- $1 < p^- \le p^+ < +\infty$
 - Dirichlet problem
 - multiple solutions
 - Neumann problem
 - multiple solutions

precise interval of parameters Λ

The problems

• $p^- > N$

- Dirichlet problem
 - multiple solutions
 - infinitely many solutions
- Neumann-type differential inclusion
 - multiple solutions

• $1 < p^- \le p^+ < +\infty$

- Dirichlet problem
 - multiple solutions
- Neumann problem
 - multiple solutions

precise interval of parameters Λ

The problems

$\bullet \ p^- > N$

- Dirichlet problem
 - multiple solutions
 - infinitely many solutions
- Neumann-type differential inclusion
 - multiple solutions
- $1 < p^- \le p^+ < +\infty$
 - Dirichlet problem
 - multiple solutions
 - Neumann problem
 - multiple solutions

precise interval of parameters Λ

The problems

$\bullet \ p^- > N$

- Dirichlet problem
 - multiple solutions
 - infinitely many solutions
- Neumann-type differential inclusion
 - multiple solutions

•
$$1 < p^- \le p^+ < +\infty$$

- Dirichlet problem
 - multiple solutions
- Neumann problem
 - multiple solutions

precise interval of parameters Λ

The problems

$\bullet \ p^- > N$

- Dirichlet problem
 - multiple solutions
 - infinitely many solutions
- Neumann-type differential inclusion
 - multiple solutions

•
$$1 < p^- \le p^+ < +\infty$$

- Dirichlet problem
 - multiple solutions
- Neumann problem
 - multiple solutions

precise interval of parameters Λ

The problems

$\bullet \ p^- > N$

- Dirichlet problem
 - multiple solutions
 - infinitely many solutions
- Neumann-type differential inclusion
 - multiple solutions

•
$$1 < p^- \le p^+ < +\infty$$

- Dirichlet problem
 - multiple solutions
- Neumann problem
 - multiple solutions

• precise interval of parameters Λ

The problems

• $p^- > N$

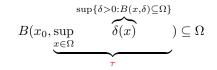
- Dirichlet problem
 - multiple solutions
 - infinitely many solutions
- Neumann-type differential inclusion
 - multiple solutions

•
$$1 < p^- \le p^+ < +\infty$$

- Dirichlet problem
 - multiple solutions
- Neumann problem
 - multiple solutions

• precise interval of parameters Λ

• there exist $x_0 \in \Omega$ and $\tau > 0$ such that



•
$$\omega_{\tau} := \tau^N \frac{\pi^{\frac{\lambda^2}{2}}}{\frac{N}{2}\Gamma(\frac{N}{2})},$$

• fixed $\alpha > 0$ and $h \in C(\bar{\Omega})$ we put

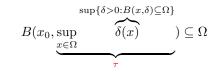
$$[\alpha]^h := \max\{\alpha^{h^-}, \alpha^{h^+}\} \quad [\alpha]_h := \min\{\alpha^{h^-}, \alpha^{h^+}\}$$

• $h: \Omega imes \mathbb{R} o \mathbb{R}$ is a Carathéodory function,

$$H(x,\xi) := \int_0^\xi h(x,t) \, dt$$

Antonia Chinnì (University of Messina) Applications of critical points results to existence and DiffEqAp

• there exist $x_0 \in \Omega$ and $\tau > 0$ such that



•
$$\omega_{\tau} := \tau^{N} \frac{\pi^{\frac{N}{2}}}{\frac{N}{2}\Gamma(\frac{N}{2})},$$

• fixed $\alpha > 0$ and $h \in C(\overline{\Omega})$ we put
$$[\alpha]^{h} := \max\{\alpha^{h^{-}}, \alpha^{h^{+}}\} \quad [\alpha]_{\tau} := \min\{\alpha^{h^{-}}, \alpha^{h^{+}}\}$$

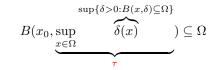
• $h: \Omega imes \mathbb{R} o \mathbb{R}$ is a Carathéodory function,

$$H(x,\xi) := \int_0^{\xi} h(x,t) dt$$

Antonia Chinnì (University of Messina) Applications of critical points results to existence and DiffEqApp

15/47

• there exist $x_0 \in \Omega$ and $\tau > 0$ such that



•
$$\omega_{\tau} := \tau^N \frac{\pi^{\frac{N}{2}}}{\frac{N}{2}\Gamma(\frac{N}{2})},$$

• fixed $\alpha > 0$ and $h \in C(\bar{\Omega})$ we put

$$[\alpha]^{h} := \max\{\alpha^{h^{-}}, \alpha^{h^{+}}\} \quad [\alpha]_{h} := \min\{\alpha^{h^{-}}, \alpha^{h^{+}}\}$$

• $h: \Omega imes \mathbb{R} o \mathbb{R}$ is a Carathéodory function,

$$H(x,\xi) := \int_0^\xi h(x,t) \, dt$$

Antonia Chinnì (University of Messina) Applications of critical points results to existence and DiffEqAp

• there exist $x_0 \in \Omega$ and $\tau > 0$ such that

ΔT

$$B(x_0, \sup_{\substack{x \in \Omega \\ x \in \Omega}} \overbrace{\delta(x)}^{\sup\{\delta > 0: B(x, \delta) \subseteq \Omega\}}) \subseteq \Omega$$

•
$$\omega_{\tau} := \tau^{N} \frac{\pi^{\frac{\Lambda^{2}}{2}}}{\frac{N}{2}\Gamma(\frac{N}{2})},$$

• fixed $\alpha > 0$ and $h \in C(\overline{\Omega})$ we put
$$[\alpha]^{h} := \max\{\alpha^{h^{-}}, \alpha^{h^{+}}\} \quad [\alpha]_{h} := \min\{\alpha^{h^{-}}, \alpha^{h^{+}}\}$$

• $h: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function,

$$H(x,\xi) := \int_0^{\xi} h(x,t) dt$$

Bonanno G. and Marano S. A.

On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., **89** (2010), 1–10.

$$\downarrow
\begin{cases}
-\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega \\
u = 0 \text{ on } \partial\Omega
\end{cases}$$
(D_{\lambda,f})

admits at least three weak solutions

Bonanno G. and Marano S. A.,

On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., **89** (2010), 1–10.

$$\begin{cases} -\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega\\ u = 0 \text{ on } \partial\Omega \end{cases}$$
 $(D_{\lambda, f})$

admits at least three weak solutions

Bonanno G. and Marano S. A.,

On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., **89** (2010), 1–10.

1

$$\begin{cases} -\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega\\ u = 0 \text{ on } \partial\Omega \end{cases}$$
 $(D_{\lambda, f})$

admits at least three weak solutions

Bonanno G. and Marano S. A.,

On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., **89** (2010), 1–10.

1

$$\begin{cases} -\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega\\ u = 0 \text{ on } \partial\Omega \end{cases}$$
 $(D_{\lambda, f})$

admits at least three weak solutions

• $f:\Omega\times\mathbb{R}\to\mathbb{R}$ is a Carathéodory function $|f(x,t)|\leq c(1+|t|^{s-1}),\ s\in[1,p^-[$

• ess inf
$$_{x \in \Omega} F(x,t) \ge 0$$
 for each $t \in \mathbb{R}$

• there exist r > 0, $\delta > 0$ with $r < \frac{1}{p^+} \left[\frac{2\delta}{\tau}\right]_p \omega_{\tau} \left(1 - \frac{1}{2^N}\right)$:

$$\alpha_r := \int_{\Omega} \sup_{|\xi| \le c_0 \gamma_r} F(x,\xi) \ dx < \frac{p^- \operatorname{ess\,inf}_{-x \in \Omega} F(x,\delta)}{\left[\frac{2\delta}{\tau}\right]^p \left(2^N - 1\right)} := \beta_{\delta}$$

• $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function

 $|f(x,t)| \le c(1+|t|^{s-1}), \ s \in [1,p^{-1}]$

$$\alpha_r := \int_{\Omega} \sup_{|\xi| \le c_0 \gamma_r} F(x,\xi) \ dx < \frac{p^{-} \mathrm{ess} \inf_{x \in \Omega} F(x,\delta)}{\left[\frac{2\delta}{\tau}\right]^p \left(2^N - 1\right)} := \beta_{\delta}$$

Bonanno, C.- Le Matematiche (2011)

for each $\lambda \in \Lambda_{r,\delta} :=]\frac{1}{\beta_{\delta}}, \frac{1}{\alpha_r}[$, the problem $(D_{\lambda,f})$ admits at least three weak solutions.

c₀ is the embedding's constant of W^{1,p(x)}₀(Ω) → C⁰(Ω̄)
 γ_r := [p⁺r]^{1/p}

Bonanno, C.- Le Matematiche (2011)

for each $\lambda \in \Lambda_{r,\delta} :=]\frac{1}{\beta_{\delta}}, \frac{1}{\alpha_r}[$, the problem $(D_{\lambda,f})$ admits at least three weak solutions.

• c_0 is the embedding's constant of $W_0^{1,p(x)}(\Omega) \hookrightarrow C^0(\overline{\Omega})$ • $\gamma_r := [p^+r]^{\frac{1}{p}}$

$$\begin{cases} -\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega\\ u = 0 \text{ su } \partial\Omega \end{cases}$$
 $(D_{\lambda, f})$

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega\\ u = 0 \text{ su } \partial\Omega \end{cases}$$

$$(D_{\lambda,a,f})$$

• $a \in L^{\infty}(\Omega)$ with ess $\inf_{\Omega} a \ge 0$

19/47

$$\begin{cases} -\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega\\ u = 0 \text{ su } \partial\Omega \end{cases}$$
 $(D_{\lambda, f})$

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega\\ u = 0 \text{ su } \partial\Omega \end{cases}$$
 $(D_{\lambda,a,f})$

• $a \in L^{\infty}(\Omega)$ with $\mathrm{ess}\, \mathrm{inf}_{\Omega} a \geq 0$

Antonia Chinnì (University of Messina) Applications of critical points results to existence and DiffEqApp

19/47

$$\begin{cases} -\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega\\ u = 0 \text{ su } \partial\Omega \end{cases}$$
 $(D_{\lambda, f})$

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega\\ u = 0 \text{ su } \partial\Omega \end{cases}$$
 $(D_{\lambda,a,f})$

• $a \in L^{\infty}(\Omega)$ with ess $\inf_{\Omega} a \ge 0$

Antonia Chinnì (University of Messina) Applications of critical points results to existence and DiffEqApp

19/47

$p^- > N$

Bonanno G. and Molica Bisci G.,

Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, (2009)

Ricceri B.

A general variational principle and some of its applications, (2000)

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega\\ u = 0 \text{ on } \partial\Omega \end{cases}$$
 $(D_{\lambda,a,f})$

admits infinitely many weak solutions

$p^- > N$

Bonanno G. and Molica Bisci G.,

Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, (2009)

Ricceri B.

A general variational principle and some of its applications, (2000)

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega\\ u = 0 \text{ on } \partial\Omega \end{cases}$$
 $(D_{\lambda,a,f})$

admits infinitely many weak solutions

$p^- > N$

Bonanno G. and Molica Bisci G.,

Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, (2009)

Ricceri B.

A general variational principle and some of its applications, (2000)

∜

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega\\ u = 0 \text{ on } \partial\Omega \end{cases}$$

$$(D_{\lambda,a,f})$$

admits infinitely many weak solutions

20/47

$p^- > N$

Bonanno G. and Molica Bisci G.,

Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, (2009)

Ricceri B.

A general variational principle and some of its applications, (2000)

11

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega\\ u = 0 \text{ on } \partial\Omega \end{cases}$$

$$(D_{\lambda,a,f})$$

admits infinitely many weak solutions

$p^- > N$

•
$$\sigma(p^+, N) = \frac{1 - \bar{\mu}^N}{\bar{\mu}^N (1 - \bar{\mu})^{p^+}} = \inf_{\mu \in]0,1[} \frac{1 - \mu^N}{\mu^N (1 - \mu)^{p^+}}$$

• $\sigma(p^-, N) = \frac{1 - \bar{\mu}^N}{\bar{\mu}^N (1 - \bar{\mu})^{p^-}} = \inf_{\mu \in]0,1[} \frac{1 - \mu^N}{\mu^N (1 - \mu)^{p^-}}$
• $I(\tau, \bar{\mu}) := \int_{B(x_0, \tau) \setminus B(x_0, \bar{\mu}\tau)} (\tau - |x - x_0|)^{p(x)} dx$
• $\beta_+ := \frac{\sigma(p^+, N)}{\tau^{p^+}} + ||a||_{\infty} \left(1 + \frac{I(\tau, \bar{\mu})}{\omega_\tau \bar{\mu}^N (\tau (1 - \bar{\mu}))^{p^+}}\right)$
• $\beta_- := \frac{\sigma(p^-, N)}{\tau^{p^-}} + ||a||_{\infty} \left(1 + \frac{I(\tau, \bar{\mu})}{\omega_\tau \bar{\mu}^N (\tau (1 - \bar{\mu}))^{p^-}}\right)$

$p^- > N$

•
$$\sigma(p^+, N) = \frac{1 - \bar{\mu}^N}{\bar{\mu}^N (1 - \bar{\mu})^{p^+}} = \inf_{\mu \in]0,1[} \frac{1 - \mu^N}{\mu^N (1 - \mu)^{p^+}}$$

• $\sigma(p^-, N) = \frac{1 - \bar{\mu}^N}{\bar{\mu}^N (1 - \bar{\mu})^{p^-}} = \inf_{\mu \in]0,1[} \frac{1 - \mu^N}{\mu^N (1 - \mu)^{p^-}}$
• $I(\tau, \bar{\mu}) := \int_{B(x_0, \tau) \setminus B(x_0, \bar{\mu}\tau)} (\tau - |x - x_0|)^{p(x)} dx$
• $\beta_+ := \frac{\sigma(p^+, N)}{\tau^{p^+}} + ||a||_{\infty} \left(1 + \frac{I(\tau, \bar{\mu})}{\omega_\tau \bar{\mu}^N (\tau (1 - \bar{\mu}))^{p^+}}\right)$
• $\beta_- := \frac{\sigma(p^-, N)}{\tau^{p^-}} + ||a||_{\infty} \left(1 + \frac{I(\tau, \bar{\mu})}{\omega_\tau \bar{\mu}^N (\tau (1 - \bar{\mu}))^{p^-}}\right)$

$p^- > N$

•
$$\sigma(p^+, N) = \frac{1-\bar{\mu}^N}{\bar{\mu}^N(1-\bar{\mu})^{p^+}} = \inf_{\mu \in]0,1[} \frac{1-\mu^N}{\mu^N(1-\mu)^{p^+}}$$

• $\sigma(p^-, N) = \frac{1-\bar{\mu}^N}{\bar{\mu}^N(1-\bar{\mu})^{p^-}} = \inf_{\mu \in]0,1[} \frac{1-\mu^N}{\mu^N(1-\mu)^{p^-}}$
• $I(\tau, \bar{\mu}) := \int_{B(x_0, \tau) \setminus B(x_0, \bar{\mu}\tau)} (\tau - |x - x_0|)^{p(x)} dx$
• $\beta_+ := \frac{\sigma(p^+, N)}{\tau^{p^+}} + ||a||_{\infty} \left(1 + \frac{I(\tau, \bar{\mu})}{\omega_\tau \bar{\mu}^N(\tau(1-\bar{\mu}))^{p^+}}\right)$
• $\beta_- := \frac{\sigma(p^-, N)}{\tau^{p^-}} + ||a||_{\infty} \left(1 + \frac{I(\tau, \bar{\mu})}{\omega_\tau \bar{\mu}^N(\tau(1-\bar{\mu}))^{p^-}}\right)$

$p^- > N$

•
$$\sigma(p^+, N) = \frac{1-\bar{\mu}^N}{\bar{\mu}^N(1-\bar{\mu})^{p^+}} = \inf_{\mu \in]0,1[} \frac{1-\mu^N}{\mu^N(1-\mu)^{p^+}}$$

• $\sigma(p^-, N) = \frac{1-\bar{\mu}^N}{\bar{\mu}^N(1-\bar{\mu})^{p^-}} = \inf_{\mu \in]0,1[} \frac{1-\mu^N}{\mu^N(1-\mu)^{p^-}}$
• $I(\tau, \bar{\mu}) := \int_{B(x_0, \tau) \setminus B(x_0, \bar{\mu}\tau)} (\tau - |x - x_0|)^{p(x)} dx$
• $\beta_+ := \frac{\sigma(p^+, N)}{\tau^{p^+}} + ||a||_{\infty} \left(1 + \frac{I(\tau, \bar{\mu})}{\omega_\tau \bar{\mu}^N(\tau(1-\bar{\mu}))^{p^+}}\right)$
• $\beta_- := \frac{\sigma(p^-, N)}{\tau^{p^-}} + ||a||_{\infty} \left(1 + \frac{I(\tau, \bar{\mu})}{\omega_\tau \bar{\mu}^N(\tau(1-\bar{\mu}))^{p^-}}\right)$

tonia Chinnì (University of Messina) Applications of critical points results to existence and DiffEqApp

 $p^- > N$

• $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is an L^1 -Carathéodory function

•
$$A := \liminf_{\xi \to +\infty} \frac{\int_{\Omega} \max_{|t| \le \xi} F(x,t) \, dx}{\xi^{p^-}}, \ B := \limsup_{\xi \to +\infty} \frac{\int_{B(x_0,\bar{\mu}\tau)} F(x,\xi) \, dx}{\xi^{p^+}}$$

• c_0^* embedding's constant of $(W_0^{1,p(x)}(\Omega), \|\cdot\|_a) \hookrightarrow C^0(\overline{\Omega})$

Bonanno-C. - Complex Variables and Elliptic Equations - (2012)

]App

 $p^- > N$

• $f:\Omega\times \mathbb{R} \to \mathbb{R}$ is an $L^1-\text{Carathéodory}$ function

•
$$A := \liminf_{\xi \to +\infty} \frac{\int_{\Omega} \max_{|t| \le \xi} F(x, t) \, dx}{\xi^{p^-}}, \quad B := \limsup_{\xi \to +\infty} \frac{\int_{B(x_0, \bar{\mu}\tau)} F(x, \xi) \, dx}{\xi^{p^+}}$$

•
$$c_0^* \text{ embedding's constant of } (W_0^{1, p(x)}(\Omega), \|\cdot\|_a) \hookrightarrow C^0(\overline{\Omega})$$

Bonanno-C. - Complex Variables and Elliptic Equations - (2012)

$$\begin{array}{l} (i) \ \mbox{ess inf}_{x\in\Omega}F(x,\xi) \geq 0 \ \mbox{for each } \xi \geq 0 \\ (ii) \ \ A < \frac{p^-}{\beta_+ p^+ c_0^* p^- \omega_\tau \bar{\mu}^N} B \\ \Longrightarrow \ \mbox{for each } \lambda \in \Lambda := \left] \frac{\beta_+ \omega_\tau \bar{\mu}^N}{Bp^-}, \frac{1}{p^+ c_0^* p^- A} \right[, \ \mbox{the problem } (D_{\lambda,a,f}) \\ \ \ \mbox{admits a sequence of weak solutions which is unbounded in} \\ W_0^{1,p(x)}(\Omega) \end{array}$$

1App

 $p^- > N$

• $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is an L^1 -Carathéodory function

•
$$A := \liminf_{\xi \to +\infty} \frac{\int_{\Omega} \max_{|t| \le \xi} F(x,t) \, dx}{\xi^{p^-}}, \ B := \limsup_{\xi \to +\infty} \frac{\int_{B(x_0,\bar{\mu}\tau)} F(x,\xi) \, dx}{\xi^{p^+}}$$

• c_0^* embedding's constant of $(W_0^{1,p(x)}(\Omega), \|\cdot\|_a) \hookrightarrow C^0(\overline{\Omega})$

Bonanno-C. - Complex Variables and Elliptic Equations - (2012)

(i) ess
$$\inf_{x \in \Omega} F(x, \xi) \ge 0$$
 for each $\xi \ge 0$
(ii) $A < \frac{p^-}{\beta_+ p^+ c_0^* p^- \omega_\tau \overline{\mu}^N} B$
 \implies for each $\lambda \in \Lambda := \left] \frac{\beta_+ \omega_\tau \overline{\mu}^N}{Bp^-}, \frac{1}{p^+ c_0^* p^- A} \right[$, the problem $(D_{\lambda,a,f})$
admits a sequence of weak solutions which is unbounded in
 $W_0^{1,p(x)}(\Omega)$

1App

$$p^- > N$$

• $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is an L^1 -Carathéodory function

•
$$A^* := \liminf_{\xi \to 0^+} \frac{\int_{\Omega} \max_{|t| \le \xi} F(x,t) \, dx}{\xi^{p^+}}, \ B^* := \limsup_{\xi \to 0^+} \frac{\int_{B(x_0,\bar{\mu}\tau)} F(x,\xi) \, dx}{\xi^{p^-}}$$

• c_0^* embedding's constant of $(W_0^{1,p(x)}(\Omega), \|\cdot\|_a) \hookrightarrow C^0(\overline{\Omega})$

Bonanno-C. - Complex Variables and Elliptic Equations -(2012)

1App

$$p^- > N$$

• $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is an L^1 -Carathéodory function

•
$$A^* := \liminf_{\xi \to 0^+} \frac{\int_{\Omega} \max_{|t| \le \xi} F(x,t) \, dx}{\xi^{p^+}}, \ B^* := \limsup_{\xi \to 0^+} \frac{\int_{B(x_0,\bar{\mu}\tau)} F(x,\xi) \, dx}{\xi^{p^-}}$$

• c_0^* embedding's constant of $(W_0^{1,p(x)}(\Omega), \|\cdot\|_a) \hookrightarrow C^0(\overline{\Omega})$

Bonanno-C. - Complex Variables and Elliptic Equations -(2012)

$$p^- > N$$

• $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is an L^1 -Carathéodory function

•
$$A^* := \liminf_{\xi \to 0^+} \frac{\int_{\Omega} \max_{|t| \le \xi} F(x,t) \, dx}{\xi^{p^+}}, \ B^* := \limsup_{\xi \to 0^+} \frac{\int_{B(x_0,\bar{\mu}\tau)} F(x,\xi) \, dx}{\xi^{p^-}}$$

• c_0^* embedding's constant of $(W_0^{1,p(x)}(\Omega), \|\cdot\|_a) \hookrightarrow C^0(\overline{\Omega})$

Bonanno-C. - Complex Variables and Elliptic Equations -(2012)

(i) ess
$$\inf_{x\in\Omega} F(x,\xi) \ge 0$$
 for each $\xi \ge 0$
(iii) $A^* < \frac{p^-}{\beta_- p^+ c_0^{*p^+} \omega_\tau \bar{\nu}^N} B^*$.
 \implies for each $\lambda \in \Lambda^* := \left] \frac{\beta_- \omega_\tau \bar{\nu}^N}{B^* p^-}, \frac{1}{p^+ c_0^{*p^+} A^*} \right[$, the problem $(D_{\lambda,a,f})$
admits a sequence of distinct weak solutions which strongly
converges to zero in $W_0^{1,p(x)}(\Omega)$.

$p^- > N$

Bonanno G. and Candito P.

J. Differential Equations 244 (2008), 3031–3059.

Bonanno G. and Marano S. A., Appl. Anal., **89** (2010), 1–10.

$$\downarrow$$

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u \in \lambda \partial F(x,u) \text{ in } \Omega\\ \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega \end{cases}$$
 (\tilde{N}_{λ})

admits at least three solutions

$p^- > N$

Bonanno G. and Candito P.,

J. Differential Equations 244 (2008), 3031–3059.

Bonanno G. and Marano S. A., Appl. Anal., **89** (2010), 1–10.

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u \in \lambda \partial F(x,u) \text{ in } \Omega\\ \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega \end{cases}$$
 (\tilde{N}_{λ})

admits at least three solutions

$p^- > N$

Bonanno G. and Candito P.,

J. Differential Equations 244 (2008), 3031–3059.

Bonanno G. and Marano S. A., Appl. Anal., **89** (2010), 1–10.

\Downarrow

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u \in \lambda \partial F(x,u) \text{ in } \Omega\\ \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega \end{cases}$$
 (\tilde{N}_{λ})

admits at least three solutions

$p^- > N$

- $f(\cdot,\xi)$ measurable for each $\xi \in \mathbb{R}$;
- $f(x, \cdot)$ locally essentially bounded for each $x \in \Omega$;
- $\bullet\,$ there exist $q\in C(\bar{\Omega}),$ with $1< q^-\leq q^+< p^-$ and c>0 such that

 $|f(x,\xi)| \le c(1+|\xi|^{q(x)-1})$

for each $(x,\xi) \in \Omega \times \mathbb{R}$.

- $\bar{c_0}$ embedding's constant of $(W^{1,p(x)}(\Omega), \|\cdot\|_a) \hookrightarrow C^0(\overline{\Omega})$
- there exist r>0, $\xi_1\in {\rm I\!R}$ with $r< \displaystyle rac{a^-}{p^+}\,|\Omega|\,[|\xi_1|]_p$ such that

$$\int_{\Omega} \sup_{|\xi| \le \bar{c_0} [rp^+]^{1/p}} F(x,\xi) \, dx < \frac{rp^-}{|\Omega| \, a^+ [|\xi_1|]^p} \int_{\Omega} F(x,\xi_1) \, dx$$

$$\Lambda := \left] \frac{p^-}{|\Omega| \, a^+[|\xi_1|]^p \int_{\Omega} F(x,\xi_1) \, dx}, \frac{r}{\int_{\Omega} \sup_{|\xi| \le \tilde{c_0}[rp^+]^{1/p}} F(x,\xi) \, dx} \right|$$

C., Livrea - Discrete and Continuous Dynamical Systems - (2012)

for each $\lambda \in \Lambda$, the problem (\tilde{N}_{λ}) admits at least three distinct solutions.

$$\Lambda := \left] \frac{p^-}{|\Omega| \, a^+[|\xi_1|]^p \int_{\Omega} F(x,\xi_1) \, dx}, \frac{r}{\int_{\Omega} \sup_{|\xi| \le \bar{c_0} [rp^+]^{1/p}} F(x,\xi) \, dx} \right|$$

C., Livrea - Discrete and Continuous Dynamical Systems - (2012)

for each $\lambda \in \Lambda$, the problem (\tilde{N}_{λ}) admits at least three distinct solutions.

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G.,

A critical point theorem via the Ekeland variational principle, Nonlinear Analysis, **75** (2012), 2992–3007.

$$\downarrow$$

$$\begin{cases}
-\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega \\
u = 0 \text{ on } \partial\Omega
\end{cases}$$

$$(D_{\lambda, f})$$

admits a non trivial weak solution

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G.,

A critical point theorem via the Ekeland variational principle, Nonlinear Analysis, **75** (2012), 2992–3007.

$$\downarrow$$

$$\begin{cases}
-\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega \\
u = 0 \text{ on } \partial\Omega
\end{cases}$$

$$(D_{\lambda, f})$$

admits a non trivial weak solution

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bo

A critical point theorem via the Ekeland variational principle, Nonlinear Analysis, **75** (2012), 2992–3007.

\Downarrow

$$\begin{cases} -\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega\\ u = 0 \text{ on } \partial\Omega \end{cases}$$
 $(D_{\lambda, f})$

admits a non trivial weak solution

Antonia Chinnì (University of Messina) Applications of critical points results to existence and DiffEqApp

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G.,

A critical point theorem via the Ekeland variational principle, Nonlinear Analysis, **75** (2012), 2992–3007.

₩

$$\begin{cases} -\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega\\ u = 0 \text{ on } \partial\Omega \end{cases}$$
 $(D_{\lambda, f})$

admits a non trivial weak solution

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno-C. -J.M.A.A.-(2014)

- $f:\Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function
- there exist $a_1, a_2 \in]0, +\infty[$ and $q \in C(\overline{\Omega}), 1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$ such that $|f(x,t)| \leq a_1 + a_2|t|^{q(x)-1} \quad \forall (x,t) \in \Omega \times \mathbb{R}$

$$\lim_{t \to 0^+} \lim_{x \to 0^+} \frac{\inf_{x \in \Omega} F(x, t)}{t^{p^-}} = +\infty$$

⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(D_{\lambda,f})$ admits at least a non trivial weak solution.

$$\lambda^* = \frac{1}{a_1 k_1 (p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} [k_q]^q (p^+)^{\frac{q^+}{p^-}}}$$

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno-C. -J.M.A.A.-(2014)

- $f:\Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function
- there exist $a_1, a_2 \in]0, +\infty[$ and $q \in C(\overline{\Omega}), 1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$ such that $|f(x,t)| \leq a_1 + a_2|t|^{q(x)-1} \quad \forall (x,t) \in \Omega \times \mathbb{R}$

•
$$\limsup_{t \to 0^+} \frac{\inf_{x \in \Omega} F(x, t)}{t^{p^-}} = +\infty$$

⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(D_{\lambda,f})$ admits at least a non trivial weak solution.

$$\lambda^* = \frac{1}{a_1 k_1 (p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} [k_q]^q (p^+)^{\frac{q^+}{p^-}}}$$

$1 < p^{-} < p^{+} < +\infty$

Bonanno-C. -J.M.A.A.-(2014)

- $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function
- there exist $a_1, a_2 \in]0, +\infty[$ and $q \in C(\overline{\Omega}), 1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$ such that $|f(x,t)| \le a_1 + a_2 |t|^{q(x)-1} \quad \forall (x,t) \in \Omega \times \mathbb{R}$ • $\limsup_{t \to 0^+} \frac{\inf_{x \in \Omega} F(x, t)}{t^{p^-}} = +\infty$

 $t \rightarrow 0^+$

there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(D_{\lambda,f})$ admits at least a non trivial weak solution.

$$\lambda^* = \frac{1}{a_1 k_1 (p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} [k_q]^q (p^+)^{\frac{q^+}{p^-}}}$$

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno-C. -J.M.A.A.-(2014)

- $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function
- there exist $a_1, a_2 \in]0, +\infty[$ and $q \in C(\overline{\Omega}), 1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$ such that $|f(x,t)| \le a_1 + a_2|t|^{q(x)-1} \quad \forall (x,t) \in \Omega \times \mathbb{R}$ • $\limsup_{t \to 0^+} \frac{\inf_{x \in \Omega} F(x,t)}{t^{p^-}} = +\infty$

⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(D_{\lambda,f})$ admits at least a non trivial weak solution.

$$\lambda^{*} = \frac{1}{a_{1}k_{1}(p^{+})^{\frac{1}{p^{-}}} + \frac{a_{2}}{q^{-}}\left[k_{q}\right]^{q}(p^{+})^{\frac{q^{+}}{p^{-}}}}$$

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G.,

Relations between the mountain pass theorem and local minima, Adv.Nonlinear Anal., **1** (2012), 205–220.

$$\downarrow$$

$$\begin{cases}
-\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega \\
u = 0 \text{ on } \partial\Omega
\end{cases}$$

$$(D_{\lambda, f})$$

admits at least two distinct weak solutions

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G.,

Relations between the mountain pass theorem and local minima, Adv.Nonlinear Anal., 1 (2012), 205–220.

$$\downarrow
\begin{cases}
-\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega \\
u = 0 \text{ on } \partial\Omega
\end{cases}$$
(D_{\lambda,f})

admits at least two distinct weak solutions

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G.,

Relations between the mountain pass theorem and local minima, Adv.Nonlinear Anal., 1 (2012), 205–220.

$$\Downarrow$$

$$\begin{cases} -\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega\\ u = 0 \text{ on } \partial\Omega \end{cases}$$
 $(D_{\lambda, f})$

admits at least two distinct weak solutions

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G.,

Relations between the mountain pass theorem and local minima, Adv.Nonlinear Anal., 1 (2012), 205–220.

∜

$$\begin{cases} -\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega\\ u = 0 \text{ on } \partial\Omega \end{cases}$$
 $(D_{\lambda, f})$

admits at least two distinct weak solutions

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno-C. - J.M.A.A.- (2014)

- $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function
- there exist $a_1, a_2 \in]0, +\infty[$ and $q \in C(\overline{\Omega}), 1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$ such that $|f(x,t)| < a_1 + a_2|t|^{q(x)-1}$ for each $(x,t) \in \Omega \times \mathbb{R};$
- there exist $\mu > p^+$ and $\beta > 0$ such that $0 < \mu F(x,\xi) \le \xi f(x,\xi)$ for each $x \in \Omega, \ |\xi| \ge \beta$

⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(D_{\lambda,f})$ admits at least two distinct weak solutions.

$$\lambda^* = \frac{1}{a_1 k_1 (p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} [k_q]^q (p^+)^{\frac{q^+}{p^-}}}$$

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno-C. - J.M.A.A.- (2014)

- $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function
- there exist $a_1, a_2 \in]0, +\infty[$ and $q \in C(\overline{\Omega}), 1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$ such that $|f(x,t)| \leq a_1 + a_2 |t|^{q(x)-1}$ for each $(x,t) \in \Omega \times \mathbb{R};$
- there exist $\mu > p^+$ and $\beta > 0$ such that $0 < \mu F(x,\xi) \le \xi f(x,\xi)$ for each $x \in \Omega, \ |\xi| \ge \beta;$

⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(D_{\lambda,f})$ admits at least two distinct weak solutions.

$$\lambda^* = \frac{1}{a_1 k_1 (p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} [k_q]^q (p^+)^{\frac{q^+}{p^-}}}$$

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno-C. - J.M.A.A.- (2014)

- $f:\Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function
- there exist $a_1, a_2 \in]0, +\infty[$ and $q \in C(\overline{\Omega}), 1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$ such that $|f(x,t)| \leq a_1 + a_2 |t|^{q(x)-1}$ for each $(x,t) \in \Omega \times \mathbb{R};$
- there exist $\mu > p^+$ and $\beta > 0$ such that $0 < \mu F(x,\xi) \le \xi f(x,\xi)$ for each $x \in \Omega, \ |\xi| \ge \beta$;

⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(D_{\lambda, f})$ admits at least two distinct weak solutions.

$$\lambda^* = \frac{1}{a_1 k_1 (p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} [k_q]^q (p^+)^{\frac{q^+}{p^-}}}$$

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno-C. - J.M.A.A.- (2014)

- $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function
- there exist $a_1, a_2 \in]0, +\infty[$ and $q \in C(\overline{\Omega}), 1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$ such that $|f(x,t)| \leq a_1 + a_2 |t|^{q(x)-1}$ for each $(x,t) \in \Omega \times \mathbb{R};$
- there exist $\mu > p^+$ and $\beta > 0$ such that $0 < \mu F(x,\xi) \le \xi f(x,\xi)$ for each $x \in \Omega, \ |\xi| \ge \beta;$
- ⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(D_{\lambda,f})$ admits at least two distinct weak solutions.

$$\lambda^* = \frac{1}{a_1 k_1 (p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} [k_q]^q (p^+)^{\frac{q^+}{p^-}}}$$

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno-C. - J.M.A.A.- (2014)

- $f:\Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function
- there exist $a_1, a_2 \in]0, +\infty[$ and $q \in C(\overline{\Omega}), 1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$ such that $|f(x,t)| \leq a_1 + a_2 |t|^{q(x)-1}$ for each $(x,t) \in \Omega \times \mathbb{R};$
- there exist $\mu > p^+$ and $\beta > 0$ such that $0 < \mu F(x,\xi) \le \xi f(x,\xi)$ for each $x \in \Omega, \ |\xi| \ge \beta;$
- ⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(D_{\lambda,f})$ admits at least two distinct weak solutions.

$$\lambda^* = \frac{1}{a_1 k_1 (p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} [k_q]^q (p^+)^{\frac{q^+}{p^-}}}$$

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G. and Marano S. A.

On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., **89** (2010), 1–10.

$$\downarrow
\begin{cases}
-\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega \\
u = 0 \text{ on } \partial\Omega
\end{cases}$$

$$(D_{\lambda, f})$$

admits at least three weak solutions

Existence of a non trivial weak solution Existence of two distinct weak solutions Ex**istence of three weak solutions** Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G. and Marano S. A.,

On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., **89** (2010), 1–10.

$$\begin{cases}
-\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega \\
u = 0 \text{ on } \partial\Omega
\end{cases}$$
(D_{\lambda,f})

admits at least three weak solutions

Existence of a non trivial weak solution Existence of two distinct weak solutions Ex**istence of three weak solutions** Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G. and Marano S. A.,

On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., **89** (2010), 1–10.

1

$\begin{cases} -\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega\\ u = 0 \text{ on } \partial\Omega \end{cases}$ $(D_{\lambda, f})$

admits at least three weak solutions

Existence of a non trivial weak solution Existence of two distinct weak solutions Ex**istence of three weak solutions** Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G. and Marano S. A.,

On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., **89** (2010), 1–10.

1

$\begin{cases} -\Delta_{p(x)}u = \lambda f(x, u) \text{ in } \Omega \\ u = 0 \text{ on } \partial\Omega \end{cases}$ $(D_{\lambda, f})$

admits at least three weak solutions

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno-C. - J.M.A.A. - (2014)

- $|f(x,t)| \le a_1 + a_2 |t|^{q(x)-1}, \ q \in C(\overline{\Omega}), \ 1 < q(x) < p^*(x)$
- $F(x,t) \le c(1+|t|^{\gamma(x)}), \ \gamma \in C(\bar{\Omega}), \ 1 < \gamma^{-} \le \gamma^{+} < p^{-}$
- $F(x,t) \ge 0, \ \forall (x,t) \in \Omega \times \mathbb{R}^+$
- there exist r > 0 and $\delta > 0$ such that

$$r < \frac{1}{p^+} \left[\frac{2\delta}{\tau}\right]_p \omega_\tau \left(1 - \frac{1}{2^N}\right) \quad \alpha_r < \frac{p^- \inf_{x \in \Omega} F(x, \delta)}{\left[\frac{2\delta}{\tau}\right]^p (2^N - 1)}$$

for each $\lambda \in \Lambda_{\tau, \delta} := \left[\frac{\left[\frac{2\delta}{\tau}\right]^p (2^N - 1)}{\left[\frac{2\delta}{\tau}\right]^p (2^N - 1)} - \frac{1}{2^N}\right]$ the problem (D)

admits three weak solutions.

$$\alpha_r := \frac{1}{r} \left\{ a_1 k_1 (p^+)^{\frac{1}{p^-}} [r]^{\frac{1}{p}} + \frac{a_2}{q^-} [k_q]^q (p^+)^{\frac{q^+}{p^-}} \left[[r]^{\frac{1}{p}} \right]^q \right\}$$

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno-C. - J.M.A.A. - (2014)

- $|f(x,t)| \le a_1 + a_2 |t|^{q(x)-1}, \ q \in C(\bar{\Omega}), \ 1 < q(x) < p^*(x)$
- $F(x,t) \leq c(1+|t|^{\gamma(x)}), \ \gamma \in C(\bar{\Omega}), \ 1 < \gamma^- \leq \gamma^+ < p^-$
- $F(x,t) \ge 0, \ \forall (x,t) \in \Omega \times \mathbb{R}^{-1}$
- there exist r > 0 and $\delta > 0$ such that

$$r < \frac{1}{p^+} \left[\frac{2\delta}{\tau}\right]_p \omega_\tau \left(1 - \frac{1}{2^N}\right) \qquad \alpha_r < \frac{p^- \inf_{x \in \Omega} F(x, \delta)}{\left[\frac{2\delta}{\tau}\right]^p (2^N - 1)}$$

$$\Rightarrow \text{ for each } \lambda \in \Lambda_{r,\delta} := \left\lfloor \frac{\lfloor \tau \rfloor}{p^{-} \inf_{x \in \Omega} F(x,\delta)}, \frac{1}{\alpha_r} \right\rfloor, \text{ the problem } (D_{\lambda,f})$$

admits three weak solutions.

$$\alpha_r := \frac{1}{r} \left\{ a_1 k_1 (p^+)^{\frac{1}{p^-}} [r]^{\frac{1}{p}} + \frac{a_2}{q^-} [k_q]^q (p^+)^{\frac{q^+}{p^-}} \left[[r]^{\frac{1}{p}} \right]^q \right\}$$

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno-C. - J.M.A.A. - (2014)

- $|f(x,t)| \le a_1 + a_2 |t|^{q(x)-1}, \ q \in C(\overline{\Omega}), \ 1 < q(x) < p^*(x)$
- $F(x,t) \leq c(1+|t|^{\gamma(x)}), \ \gamma \in C(\bar{\Omega}), \ 1 < \gamma^- \leq \gamma^+ < p^-$
- $F(x,t) \ge 0, \ \forall (x,t) \in \Omega \times \mathbb{R}^+$
- there exist r > 0 and $\delta > 0$ such that

$$r < \frac{1}{p^+} \left[\frac{2\delta}{\tau}\right]_p \omega_\tau \left(1 - \frac{1}{2^N}\right) \quad \alpha_r < \frac{p^- \inf_{x \in \Omega} F(x, \delta)}{\left[\frac{2\delta}{\tau}\right]^p (2^N - 1)}$$

$$\Rightarrow \text{ for each } \lambda \in \Lambda_{r,\delta} := \left| \frac{\left|\frac{2\delta}{\tau}\right|^p (2^N - 1)}{p^{-} \inf_{x \in \Omega} F(x,\delta)}, \frac{1}{\alpha_r} \right|, \text{ the problem } (D_{\lambda,f})$$

admits three weak solutions.

$$\alpha_r := \frac{1}{r} \left\{ a_1 k_1 (p^+)^{\frac{1}{p^-}} [r]^{\frac{1}{p}} + \frac{a_2}{q^-} [k_q]^q (p^+)^{\frac{q^+}{p^-}} \left[[r]^{\frac{1}{p}} \right]^q \right\}$$

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno-C. - J.M.A.A. - (2014)

- $|f(x,t)| \le a_1 + a_2 |t|^{q(x)-1}, \ q \in C(\overline{\Omega}), \ 1 < q(x) < p^*(x)$
- $F(x,t) \leq c(1+|t|^{\gamma(x)}), \ \gamma \in C(\bar{\Omega}), \ 1 < \gamma^- \leq \gamma^+ < p^-$
- $F(x,t) \ge 0, \ \forall (x,t) \in \Omega \times \mathbb{R}^+$
- there exist r > 0 and $\delta > 0$ such that

$$r < \frac{1}{p^+} \left[\frac{2\delta}{\tau}\right]_p \omega_\tau \left(1 - \frac{1}{2^N}\right) \quad \alpha_r < \frac{p^- \inf_{x \in \Omega} F(x, \delta)}{\left[\frac{2\delta}{\tau}\right]^p (2^N - 1)}$$

$$\Rightarrow$$
 for each $\lambda \in \Lambda_{r,\delta} := \left| \frac{\left|\frac{2\pi}{p}\right|^{r} \left(2^{(r-1)}\right)}{p^{-} \inf_{x \in \Omega} F(x,\delta)}, \frac{1}{\alpha_r} \right|$, the problem $(D_{\lambda,f})$

admits three weak solutions.

$$\alpha_r := \frac{1}{r} \left\{ a_1 k_1(p^+)^{\frac{1}{p^-}} [r]^{\frac{1}{p}} + \frac{a_2}{q^-} [k_q]^q (p^+)^{\frac{q^+}{p^-}} \left[[r]^{\frac{1}{p}} \right]^q \right\}$$

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno-C. - J.M.A.A. - (2014)

- $|f(x,t)| \le a_1 + a_2 |t|^{q(x)-1}, \ q \in C(\overline{\Omega}), \ 1 < q(x) < p^*(x)$
- $F(x,t) \leq c(1+|t|^{\gamma(x)}), \ \gamma \in C(\bar{\Omega}), \ 1 < \gamma^- \leq \gamma^+ < p^-$
- $F(x,t) \ge 0, \ \forall (x,t) \in \Omega \times \mathbb{R}^+$
- there exist r > 0 and $\delta > 0$ such that

$$r < \frac{1}{p^+} \left[\frac{2\delta}{\tau}\right]_p \omega_\tau \left(1 - \frac{1}{2^N}\right) \quad \alpha_r < \frac{p^- \inf_{x \in \Omega} F(x, \delta)}{\left[\frac{2\delta}{\tau}\right]^p (2^N - 1)}$$

$$\implies$$
 for each $\lambda \in \Lambda_{r,\delta} := \left| \frac{\left[\frac{2\delta}{\tau}\right]^p (2^N - 1)}{p^- \inf_{x \in \Omega} F(x,\delta)}, \frac{1}{\alpha_r} \right|$, the problem $(D_{\lambda,f})$

admits three weak solutions.

$$\alpha_r := \frac{1}{r} \left\{ a_1 k_1 (p^+)^{\frac{1}{p^-}} [r]^{\frac{1}{p}} + \frac{a_2}{q^-} [k_q]^q (p^+)^{\frac{q^+}{p^-}} \left[[r]^{\frac{1}{p}} \right]^q \right\}$$

DiffEa[&]Ap

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno-C. - J.M.A.A. - (2014)

- $|f(x,t)| \le a_1 + a_2 |t|^{q(x)-1}, \ q \in C(\bar{\Omega}), \ 1 < q(x) < p^*(x)$
- $F(x,t) \leq c(1+|t|^{\gamma(x)}), \ \gamma \in C(\bar{\Omega}), \ 1 < \gamma^- \leq \gamma^+ < p^-$
- $F(x,t) \ge 0, \ \forall (x,t) \in \Omega \times \mathbb{R}^+$
- there exist r > 0 and $\delta > 0$ such that

$$r < \frac{1}{p^+} \left[\frac{2\delta}{\tau}\right]_p \omega_\tau \left(1 - \frac{1}{2^N}\right) \quad \alpha_r < \frac{p^- \inf_{x \in \Omega} F(x, \delta)}{\left[\frac{2\delta}{\tau}\right]^p (2^N - 1)}$$

$$\Rightarrow \text{ for each } \lambda \in \Lambda_{r, \delta} := \left] \frac{\left[\frac{2\delta}{\tau}\right]^p (2^N - 1)}{p^- \inf_{x \in \Omega} F(x, \delta)}, \frac{1}{\alpha_r} \right[\text{, the problem } (D_{\lambda, f}) \text{ admits three weak solutions.}$$

$$\alpha_r := \frac{1}{r} \left\{ a_1 k_1 (p^+)^{\frac{1}{p^-}} [r]^{\frac{1}{p}} + \frac{a_2}{q^-} [k_q]^q (p^+)^{\frac{q^+}{p^-}} \left[[r]^{\frac{1}{p}} \right]^q \right\}$$

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno-C. - J.M.A.A. - (2014)

- $|f(x,t)| \le a_1 + a_2 |t|^{q(x)-1}, \ q \in C(\bar{\Omega}), \ 1 < q(x) < p^*(x)$
- $F(x,t) \leq c(1+|t|^{\gamma(x)}), \ \gamma \in C(\bar{\Omega}), \ 1 < \gamma^- \leq \gamma^+ < p^-$
- $F(x,t) \ge 0, \ \forall (x,t) \in \Omega \times \mathbb{R}^+$
- there exist r > 0 and $\delta > 0$ such that

$$r < \frac{1}{p^+} \left[\frac{2\delta}{\tau}\right]_p \omega_\tau \left(1 - \frac{1}{2^N}\right) \quad \alpha_r < \frac{p^- \inf_{x \in \Omega} F(x, \delta)}{\left[\frac{2\delta}{\tau}\right]^p (2^N - 1)}$$

$$\Rightarrow \text{ for each } \lambda \in \Lambda_{r, \delta} := \left] \frac{\left[\frac{2\delta}{\tau}\right]^p (2^N - 1)}{p^- \inf_{x \in \Omega} F(x, \delta)}, \frac{1}{\alpha_r} \right[\text{, the problem } (D_{\lambda, f}) \text{ admits three weak solutions.}$$

$$\alpha_r := \frac{1}{r} \left\{ a_1 k_1 (p^+)^{\frac{1}{p^-}} [r]^{\frac{1}{p}} + \frac{a_2}{q^-} [k_q]^q (p^+)^{\frac{q^+}{p^-}} \left[[r]^{\frac{1}{p}} \right]^q \right\}$$

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

G. Bonanno and P. Candito,

J. Differential Equations **244** (2008), 3031–3059.

\Downarrow

$$\begin{cases} -\Delta_{p(x)}u = \lambda(f(x,u) + \mu g(x,u)) \text{ in } \Omega\\ u = 0 \text{ on } \partial\Omega \end{cases}$$
 $(D_{\lambda,\mu,f,g})$

admits at least three weak solutions

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

G. Bonanno and P. Candito,

J. Differential Equations 244 (2008), 3031–3059.

\Downarrow

$$\begin{cases} -\Delta_{p(x)}u = \lambda(f(x, u) + \mu g(x, u)) \text{ in } \Omega\\ u = 0 \text{ on } \partial\Omega \end{cases}$$
(L)

admits at least three weak solutions

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

G. Bonanno and P. Candito,

J. Differential Equations 244 (2008), 3031–3059.

₩

$$\begin{cases} -\Delta_{p(x)}u = \lambda(f(x,u) + \mu g(x,u)) \text{ in } \Omega\\ u = 0 \text{ on } \partial\Omega \end{cases}$$
 $(D_{\lambda,\mu,f,g})$

admits at least three weak solutions

$1 < p^- \le p^+ < +\infty$

 $\mathcal{H} := \{h : \Omega \times \mathbb{R} \to \mathbb{R} \text{ locally bounded} : (m_1), (m_2), (m_3) \text{ hold } \}$

 $\begin{array}{ll} (m_1) & h(\cdot,t) \mbox{ measurable for each } t \in \mathbb{R}; \\ (m_2) & \mbox{there exists } \Omega_0 \subseteq \Omega \mbox{ with } m(\Omega_0) = 0 \mbox{ such that the set} \end{array}$

$$D_h := \bigcup_{x \in \Omega \setminus \Omega_0} \{ t \in \mathbb{R} : h(x, \cdot) \text{ is discontinuous at } t \}$$

has measure zero.

(m_3) the functions

$$h^{-}(x,z) := \lim_{\delta \to 0^{+}} \mathrm{ess} \inf_{|\xi - z| < \delta} h(x,\xi), \ h^{+}(x,z) := \lim_{\delta \to 0^{+}} \mathrm{ess} \sup_{|\xi - z| < \delta} h(x,\xi)$$

are superpositionally measurable i.e. $h^-(\cdot, u(\cdot))$ and $h^+(\cdot, u(\cdot))$ are measurable provided $u: \Omega \to \mathbb{R}$ is measurable too DiffEq[81App

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

$$(f + \mu g)^{-}(x,t) \le 0 \le (f + \mu g)^{+}(x,t) \Longrightarrow (f + \mu g)(x,t) = 0$$

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of three weak solutions Multiple solutions with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno-C. - Math. Nachr. - (2011)

For each $\lambda > \frac{2}{p^-}(2^N-1)\frac{[\frac{2h}{\tau}]^p}{\inf_{x\in\Omega}F(x,h)}$, there exists $\delta > 0$ such that, for every $\mu \in [0,\delta]$, the problem $(D_{\lambda,\mu,f,g})$ admits at least three non negative weak solutions.

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of a non trivial weak solution with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G.,

A critical point theorem via the Ekeland variational principle, Nonlinear Analysis, **75** (2012), 2992–3007.

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega\\\\ \frac{\partial u}{\partial \nu} = 0 \text{ su } \partial \Omega \end{cases}$$

$$(N_{\lambda,f})$$

admits at least a non trivial weak solution

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of a non trivial weak solution with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G.,

A critical point theorem via the Ekeland variational principle, Nonlinear Analysis, **75** (2012), 2992–3007.

$$\downarrow
\begin{cases}
-\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega \\
\frac{\partial u}{\partial \nu} = 0 \text{ su } \partial\Omega
\end{cases}$$
(N_{\lambda,f})

admits at least a non trivial weak solution

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of a non trivial weak solution with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G.,

A critical point theorem via the Ekeland variational principle, Nonlinear Analysis, **75** (2012), 2992–3007.

11

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega\\ \frac{\partial u}{\partial \nu} = 0 \text{ su } \partial \Omega \end{cases}$$

$$(N_{\lambda,f})$$

admits at least a non trivial weak solution

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of a non trivial weak solution with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G.,

A critical point theorem via the Ekeland variational principle, Nonlinear Analysis, **75** (2012), 2992–3007.

11

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega\\\\ \frac{\partial u}{\partial \nu} = 0 \text{ su } \partial \Omega \end{cases}$$

$$(N_{\lambda,f})$$

admits at least a non trivial weak solution

$1 < p^- \le p^+ < +\infty$

Barletta-C. - Electronic Journal of Differential Equations - (2013)

- $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function
- there exist $a_1, a_2 \in]0, +\infty[$ e $q \in C(\overline{\Omega}), 1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$ such that $|f(x,t)| \leq a_1 + a_2|t|^{q(x)-1}$ for each $(x,t) \in \Omega \times \mathbb{R}$

•
$$\limsup_{t \to 0^+} \frac{\inf_{x \in \Omega} F(x, t)}{t^{p^-}} = +\infty$$

⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(N_{\lambda,f})$ admits at least a non trivial weak solution.

$$\lambda^* = \frac{1}{a_1 \bar{k_1} (p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} \left[\bar{k_q}\right]^q (p^+)^{\frac{q^+}{p^-}}}$$

DiffEa[&]A

$1 < p^- \le p^+ < +\infty$

Barletta-C. - Electronic Journal of Differential Equations - (2013)

- $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function
- there exist $a_1, a_2 \in]0, +\infty[$ e $q \in C(\overline{\Omega}), 1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$ such that $|f(x,t)| \leq a_1 + a_2|t|^{q(x)-1}$ for each $(x,t) \in \Omega \times \mathbb{R}$

•
$$\limsup_{t \to 0^+} \frac{\inf_{x \in \Omega} F(x, t)}{t^{p^-}} = +\infty$$

⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(N_{\lambda,f})$ admits at least a non trivial weak solution.

$$\lambda^* = \frac{1}{a_1 \bar{k_1} (p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} \left[\bar{k_q}\right]^q (p^+)^{\frac{q^+}{p^-}}}$$

DiffEa[&]A

$1 < p^- \le p^+ < +\infty$

Barletta-C. - Electronic Journal of Differential Equations - (2013)

- $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function
- there exist $a_1, a_2 \in]0, +\infty[$ e $q \in C(\overline{\Omega}), 1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$ such that $|f(x,t)| \leq a_1 + a_2|t|^{q(x)-1}$ for each $(x,t) \in \Omega \times \mathbb{R}$

•
$$\limsup_{t \to 0^+} \frac{\inf_{x \in \Omega} F(x, t)}{t^{p^-}} = +\infty$$

⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(N_{\lambda,f})$ admits at least a non trivial weak solution.

$$\lambda^* = \frac{1}{a_1 \bar{k_1} (p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} \left[\bar{k_q}\right]^q (p^+)^{\frac{q^+}{p^-}}}$$

DiffEa[&

$1 < p^- \le p^+ < +\infty$

Barletta-C. - Electronic Journal of Differential Equations - (2013)

- $f:\Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function
- there exist $a_1, a_2 \in]0, +\infty[$ e $q \in C(\overline{\Omega}), 1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$ such that $|f(x,t)| \leq a_1 + a_2|t|^{q(x)-1}$ for each $(x,t) \in \Omega \times \mathbb{R}$

•
$$\limsup_{t \to 0^+} \frac{\inf_{x \in \Omega} F(x, t)}{t^{p^-}} = +\infty$$

⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(N_{\lambda,f})$ admits at least a non trivial weak solution.

$$\lambda^* = \frac{1}{a_1 \bar{k_1}(p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} \left[\bar{k_q}\right]^q (p^+)^{\frac{q^+}{p^-}}}$$

DiffEa[&

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of a non trivial weak solution with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G.,

Relations between the mountain pass theorem and local minima, Adv.Nonlinear Anal., **1** (2012), 205–220.

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega\\\\ \frac{\partial u}{\partial \nu} = 0 \text{ su } \partial \Omega \end{cases}$$

$$(N_{\lambda,f})$$

admits at least two distinct weak solutions

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of a non trivial weak solution with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G.,

Relations between the mountain pass theorem and local minima, Adv.Nonlinear Anal., 1 (2012), 205–220.

$$\begin{aligned}
& \downarrow \\
& \left\{ \begin{array}{l}
-\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega \\
& \frac{\partial u}{\partial \nu} = 0 \quad \text{su } \partial\Omega
\end{aligned} \right. \tag{N}_{\lambda,f}$$

admits at least two distinct weak solutions

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of a non trivial weak solution with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G.,

Relations between the mountain pass theorem and local minima, Adv.Nonlinear Anal., 1 (2012), 205–220.

...

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega\\ \frac{\partial u}{\partial \nu} = 0 \text{ su } \partial \Omega \end{cases}$$

$$(N_{\lambda,f})$$

admits at least two distinct weak solutions

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of a non trivial weak solution with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G.,

Relations between the mountain pass theorem and local minima, Adv.Nonlinear Anal., 1 (2012), 205–220.

11

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega\\ \frac{\partial u}{\partial \nu} = 0 \text{ su } \partial \Omega \end{cases}$$

$$(N_{\lambda,f})$$

admits at least two distinct weak solutions

$1 < p^- \le p^+ < +\infty$

Barletta-C. - Electronic Journal of Differential Equations - (2013)

- $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function
- there exist $a_1, a_2 \in]0, +\infty[$ e $q \in C(\overline{\Omega}), 1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$ such that $|f(x,t)| \leq a_1 + a_2|t|^{q(x)-1}$ for each $(x,t) \in \Omega \times \mathbb{R}$;
- there exist $\mu > p^+$, $\beta > 0$ such that $0 < \mu F(x,\xi) \le \xi f(x,\xi)$ per ogni $x \in \Omega$, $|\xi| \ge \beta$
- ⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(N_{\lambda,f})$ admits at least two distinct weak solutions.

$$\lambda^* = \frac{1}{a_1 \bar{k_1}(p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} \left[\bar{k_q}\right]^q (p^+)^{\frac{q^+}{p^-}}}$$

$1 < p^- \le p^+ < +\infty$

Barletta-C. - Electronic Journal of Differential Equations - (2013)

- $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function
- there exist $a_1, a_2 \in]0, +\infty[$ e $q \in C(\overline{\Omega}), 1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$ such that $|f(x,t)| \leq a_1 + a_2|t|^{q(x)-1}$ for each $(x,t) \in \Omega \times \mathbb{R}$;
- there exist $\mu > p^+$, $\beta > 0$ such that $0 < \mu F(x,\xi) \le \xi f(x,\xi)$ per ogni $x \in \Omega$, $|\xi| \ge \beta$;

⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(N_{\lambda,f})$ admits at least two distinct weak solutions.

$$\lambda^* = \frac{1}{a_1 \bar{k_1} (p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} \left[\bar{k_q}\right]^q (p^+)^{\frac{q^+}{p^-}}}$$

DiffEa[&]Ap

$1 < p^- \le p^+ < +\infty$

Barletta-C. - Electronic Journal of Differential Equations - (2013)

- $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function
- there exist $a_1, a_2 \in]0, +\infty[$ e $q \in C(\overline{\Omega}), 1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$ such that $|f(x,t)| \leq a_1 + a_2|t|^{q(x)-1}$ for each $(x,t) \in \Omega \times \mathbb{R}$;
- there exist $\mu > p^+$, $\beta > 0$ such that $0 < \mu F(x,\xi) \le \xi f(x,\xi)$ per ogni $x \in \Omega$, $|\xi| \ge \beta$;

⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(N_{\lambda,f})$ admits at least two distinct weak solutions.

$$\lambda^* = \frac{1}{a_1 \bar{k_1} (p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} \left[\bar{k_q}\right]^q (p^+)^{\frac{q^+}{p^-}}}$$

DiffEa[&]Ap

$1 < p^- \le p^+ < +\infty$

Barletta-C. - Electronic Journal of Differential Equations - (2013)

- $f:\Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function
- there exist $a_1, a_2 \in]0, +\infty[$ e $q \in C(\overline{\Omega}), 1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$ such that $|f(x,t)| \le a_1 + a_2|t|^{q(x)-1}$ for each $(x,t) \in \Omega \times \mathbb{R}$;
- there exist $\mu > p^+$, $\beta > 0$ such that $0 < \mu F(x,\xi) \le \xi f(x,\xi)$ per ogni $x \in \Omega$, $|\xi| \ge \beta$;

⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(N_{\lambda,f})$ admits at least two distinct weak solutions.

$$\lambda^* = \frac{1}{a_1 \bar{k_1} (p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} \left[\bar{k_q} \right]^q (p^+)^{\frac{q^+}{p^-}}}$$

DiffEa[&]A

$1 < p^- \le p^+ < +\infty$

Barletta-C. - Electronic Journal of Differential Equations - (2013)

- $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function
- there exist $a_1, a_2 \in]0, +\infty[$ e $q \in C(\overline{\Omega}), 1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$ such that $|f(x,t)| \le a_1 + a_2|t|^{q(x)-1}$ for each $(x,t) \in \Omega \times \mathbb{R}$;
- there exist $\mu > p^+$, $\beta > 0$ such that $0 < \mu F(x,\xi) \le \xi f(x,\xi)$ per ogni $x \in \Omega$, $|\xi| \ge \beta$;

⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(N_{\lambda,f})$ admits at least two distinct weak solutions.

$$\lambda^* = \frac{1}{a_1 \bar{k_1} (p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} \left[\bar{k_q} \right]^q (p^+)^{\frac{q^+}{p^-}}}$$

DiffEa[&]A

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of a non trivial weak solution with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G., D'Aguì G. and Winkert P. Sturm-Liouville equations involving discontinuous nonlinearities. Minimax Theory and its Applications, **01**, 1 (2015).

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega\\ \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial\Omega \end{cases}$$

$$(N_{\lambda,a})$$

admits at least a non trivial weak solution

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of a non trivial weak solution with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G., D'Aguì G. and Winkert P. Sturm-Liouville equations involving discontinuous nonlinearities, Minimax Theory and its Applications, **01**, 1 (2015).

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega\\\\ \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial\Omega \end{cases}$$

$$(N_{\lambda,a})$$

admits at least a non trivial weak solution

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of a non trivial weak solution with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

Bonanno G., D'Aguì G. and Winkert P. Sturm-Liouville equations involving discontinuous nonlinearities, Minimax Theory and its Applications, **01**, 1 (2015).

Ш

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega\\\\ \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial\Omega \end{cases}$$

$$(N_{\lambda,a})$$

admits at least a non trivial weak solution

Multiple solutions for Neumann problem

$1 < p^- \le p^+ < +\infty$

Sturm-Liouville equations involving discontinuous nonlinearities,

$$\begin{cases} -\Delta_{p(x)}u + a(x)|u|^{p(x)-2}u = \lambda f(x,u) \text{ in } \Omega\\ \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega \end{cases}$$

$$(N_{\lambda,a})$$

admits at least a non trivial weak solution

$1 < p^- \le p^+ < +\infty$

Barletta-C.- O'Regan - Nonlinear Analysis: Real World Applications - (2016)

Let $f \in \mathcal{H}$, satisfying

(f₂) there exist $a_1, a_2 \in [0, +\infty[$ and $q \in C(\overline{\Omega})$ with $1 < q(x) < p^*(x)$ for each $x \in \overline{\Omega}$, such that

$$|f(x,t)| \le a_1 + a_2 |t|^{q(x)-1}$$

(f₃) for each
$$\lambda > 0$$
, for a.e. $x \in \Omega$ and each $z \in D_f$ the condition $\lambda f^-(x,z) \le a(x)|z|^{p(x)-2}z \le \lambda f^+(x,z)$ implies $\lambda f(x,z) = a(x)|z|^{p(x)-2}z$,

$$(f_{\epsilon})$$

$$\limsup_{t \to 0^+} \frac{\int_{\Omega} F(x,t) \, dx}{t^{p^-}} = +\infty.$$

⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(N_{\lambda,a})$ admits at least one non trivial weak solution.

DittEq[&]App

$1 < p^- \le p^+ < +\infty$

Barletta-C.- O'Regan - Nonlinear Analysis: Real World Applications - (2016)

Let $f \in \mathcal{H}$, satisfying

(f₂) there exist $a_1, a_2 \in [0, +\infty[$ and $q \in C(\bar{\Omega})$ with $1 < q(x) < p^*(x)$ for each $x \in \bar{\Omega}$, such that

$$|f(x,t)| \le a_1 + a_2 |t|^{q(x)-1}$$

(f₃) for each
$$\lambda > 0$$
, for a.e. $x \in \Omega$ and each $z \in D_f$ the condition
 $\lambda f^-(x,z) \le a(x)|z|^{p(x)-2}z \le \lambda f^+(x,z)$ implies
 $\lambda f(x,z) = a(x)|z|^{p(x)-2}z$,
(f₄)

$$\limsup_{t \to 0^+} \frac{\int_{\Omega} F(x,t) \, dx}{t^{p^-}} = +\infty.$$

⇒ there exists $\lambda^* > 0$ such that for every $\lambda \in]0, \lambda^*[$ the problem $(N_{\lambda,a})$ admits at least one non trivial weak solution.

DittEq[&]App

Existence of a non trivial weak solution Existence of two distinct weak solutions Existence of a non trivial weak solution with discontinuous non linear term

$1 < p^- \le p^+ < +\infty$

$$\lambda^* = \frac{1}{a_1 \bar{k_1}(p^+)^{\frac{1}{p^-}} + \frac{a_2}{q^-} \left[\bar{k_q}\right]^q (p^+)^{\frac{q^+}{p^-}}}$$

Bonanno G. and Chinnì A.,

Discontinuous elliptic problems involving the p(x)-Laplacian, Math. Nachr., **284**, n.5,6 (2011), 639–652.

Bonanno G. and Chinnì A.,

Existence results of infinitely many solutions for p(x)-Laplacian elliptic Dirichlet problems,

Complex Variables and Elliptic Equations, **57**, n.11 (2012), 1233-,Äl1246.

Barletta G., Chinnì A. and O'Regan D.,

Existence results for a Neumann problem involving the p(x)-Laplacian with discontinuous nonlinearities,

Nonlinear Analysis: Real World Applications, 27, (2016), 312,Äì-325.

Bonanno G. and Chinnì A.,

Multiple solutions for elliptic problems involving the p(x)-Laplacian,

Le Matematiche, 66 (2011), 105–113.

Chinnì A. and Livrea R.,

Multiple solutions for a Neumann-type differential inclusion problem involving the $p(\cdot)\text{-Laplacian},$

Discrete and Continuous Dynamical Systems Series S, 5, n.4(2012),753–764.

Bonanno G. and Chinnì A.,

Existence and multiplicity of weak solutions for elliptic Dirichlet problems with variable exponent,

Journal of Mathematical Analysis and Applications, **418**, (2014), 812–827.

Barletta G. and Chinnì A.,

Existence of solutions for a Neumann problem involving the p(x)-Laplacian,

Electronic Journal of Differential Equations, 158, (2013), 1-12.

Cammaroto F., Chinnì A., Di Bella B.,

Multiple solutions for a Neumann problem involving the p(x)-Laplacian Nonlinear Anal., **71** (2009), 4486–4492.

Bonanno G.,

A critical point theorem via the Ekeland variational principle, Nonlinear Analysis, **75** (2012), 2992–3007.

Bonanno G.,

Relations between the mountain pass theorem and local minima, Adv.Nonlinear Anal., **1** (2012), 205–220.

Bonanno G. and Marano S. A.,

On the structure of the critical set of non-differentiable functions with a weak compactness condition,

```
Appl. Anal., 89 (2010), 1–10.
```



```
Diening L., Harjulehto P., Hästö P. and Ružicka M.
Lebesgue and Sobolev spaces with variable exponents,
```


Cruz-Uribe D., Fiorenza A.

Variable Lebesgue Spaces: Foundations and Harmonic Analysis, (2013), Birkhauser

📕 Fan X. L., Zhang Q.H. and Zhao Y.Z.,

A strong maximum principle for p(x)- Laplace equations, Chinese J. Contemp. Math., 24 (2003), 277–282.

Fan X. L. and Zhao D..

On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,

```
Kováčik O. and Rákosník J.,
```

On spaces $L^{p(x)}$ and $W^{1,p(x)}$. Czechoslovak Math., 41 (1991), 592-618.

DiffEa[&]Au