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Introduction

We consider the following (p, q)-Laplacian problem{
−∆pu −∆qu = α|u|p−2u + β|u|q−2u in Ω,

u = 0 on ∂Ω,
(Dα,β)

where p > q > 1, ∆pu := div(|∇u|p−2∇u), and α, β ∈ R are parameters;
Ω ⊂ RN is a bounded domain, N ­ 1.

We are interested in the existence and multiplicity
of positive solutions to (Dα,β) with respect to α and β.

Problem (Dα,β) corresponds to the C 1 energy functional
Eα,β : W 1,p0 (Ω)→ R defined as

Eα,β(u) =
1
p

(∫
Ω

|∇u|p dx − α
∫

Ω

|u|p dx
)

+
1
q

(∫
Ω

|∇u|q dx − β
∫

Ω

|u|q dx
)
.

By definition, critical points of Eα,β are weak solutions of (Dα,β).
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Introduction

Let us denote the first eigenvalue of the r -Laplacian as λ1(r), i.e.,

λ1(r) := inf
{
‖∇u‖rr
‖u‖rr

: u ∈W 1,r0 (Ω) \ {0}
}
, r = p, q.

The corresponding (first) eigenfunction is denoted as ϕr .

Lemma

Let u ∈W 1,r0 (Ω).

If γ ¬ λ1(r), then ∫
Ω

|∇u|r dx − γ
∫

Ω

|u|r dx ­ 0.

If γ > λ1(r), then the sign of∫
Ω

|∇u|r dx − γ
∫

Ω

|u|r dx

depends on u.
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Brief historical remarks

• Neumann boundary conditions (either α = 0 or β = 0) - [Mihăilescu,
2011], [Mihăilescu, Moroşanu, 2015], etc.

• Dirichlet boundary conditions - see the survey [Marano, Mosconi, 2017].

In [Tanaka, 2014] the following two problems were considered:

1) −∆pu −∆qu = α|u|p−2u in Ω, u = 0 on ∂Ω,

for which it was proved

the existence of a positive solution for α > λ1(p);

the nonexistence of solutions for α ¬ λ1(p),

and

2) −∆pu −∆qu = β|u|q−2u in Ω, u = 0 on ∂Ω,

for which it was proved

the existence and uniqueness of a positive solution for β > λ1(q);

the nonexistence of solutions for β ¬ λ1(q).
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Brief historical remarks

In [Motreanu, Tanaka, 2016] the following problem was considered:

−∆pu −∆qu = λ(|u|p−2u + |u|q−2u) in Ω, u = 0 on ∂Ω (3)

and it was proved

the existence of a positive solution when

min{λ1(q), λ1(p)} < λ < max{λ1(q), λ1(p)};

the nonexistence of solutions when λ ¬ min{λ1(q), λ1(p)}.

If λ1(q) < λ1(p), then Eλ,λ has a global minimum;

If λ1(q) > λ1(p), then Eλ,λ has the mountain pass geometry.

In [Kajikiya, Tanaka, Tanaka, 2017], problem (3) was studied in more
details in 1D case by means of the time map.
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Two-parametric point of view

λ1(p)

λ1(q)

α

β

α = β

What happens for λ ­ max{λ1(q), λ1(p)}, or, more general,
for α ­ λ1(p) and β ­ λ1(q)?
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First critical curve

In order to handle the existence of ground states of Eα,β in the case
α ­ λ1(p) and β ­ λ1(q), we define the following family of critical
points:

β∗(α) := inf
{‖∇u‖qq
‖u‖qq

: u ∈W 1,p0 \ {0} and
‖∇u‖pp
‖u‖pp

¬ α
}
.

λ1(p)

λ1(q)

α

β

α∗

β∗

β∗(α)

β∗ =
‖∇ϕp‖qq
‖ϕp‖qq

α∗ =
‖∇ϕq‖pp
‖ϕq‖pp

β∗ =
‖∇ϕp‖qq
‖ϕp‖qq

.
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Existence

Theorem

Let α > λ1(p) and λ1(q) < β ¬ β∗(α). Then (Dα,β) has at least two
positive solutions u1 and u2 such that

Eα,β(u1) < 0 and u1 is the least energy solution (ground state), i.e.,

Eα,β(u1) ¬ Eα,β(w) for any other solution w of (Dα,β).

Eα,β(u2) > 0 if β < β∗(α), and Eα,β(u2) = 0 if β = β∗(α).
Moreover, u2 is the least positive energy solution, i.e.,

0 ¬ Eα,β(u2) ¬ Eα,β(w) for any other solution w of (Dα,β)

such that Eα,β(w) > 0.

However, recent results of [Il’yasov, Silva, 2017] indicate that β∗(α) is
not a threshold curve for the existence of positive solutions of (Dα,β).
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Beyond β∗(α). Second critical curve

Define the following family of critical points:

βps(α) := sup{β ∈ R : (Dα,β) has a positive solution}

for α ­ λ1(p).

Proposition

β∗(α) ¬ βps(α) < +∞ for any α ­ λ1(p).

Main ingredient of the proof is the following generalized Picone’s identity:

Lemma

Let 1 < q < p <∞. Then there exists ρ > 0 such that for any
differentiable functions u > 0 and ϕ ­ 0 in Ω it holds

(
|∇u|p−2 + |∇u|q−2

)
∇u∇

(
ϕp

up−1 + uq−1

)
¬
|∇ϕ|p + |∇

(
ϕp/q

)
|q

ρ
.
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Existence. Properties of βps(α)
Theorem

Let α ­ λ1(p) and λ1(q) < β < βps(α). Then (Dα,β) has a (nontrivial)
positive solution.

λ1(p)

λ1(q)

α

β

α∗

β∗

β∗(α)

βps(α)
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β 6= β∗

Recall that

λ1(p) =
‖∇ϕp‖pp
‖ϕp‖pp

, β∗ =
‖∇ϕp‖qq
‖ϕp‖qq

.

Lemma

Let α = λ1(p).

If λ1(q) < β < β∗, then Eα,β has a global minimizer.

If β > β∗, then inf
u∈W 1,p

0

Eα,β = −∞.
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β = β∗. A Fredholm-type result

Recall that

λ1(p) =
‖∇ϕp‖pp
‖ϕp‖pp

, β∗ =
‖∇ϕp‖qq
‖ϕp‖qq

.

Theorem

Let α = λ1(p) and β = β∗.

If p < 2q, then inf
u∈W 1,p

0

Eα,β = −∞.

If p = 2q, then inf
u∈W 1,p

0

Eα,β > −∞.

If p > 2q, then Eα,β has a global minimizer.

The situation is reminiscent of the Fredholm alternative for the
p-Laplacian at the first eigenvalue, where the geometry of the energy
functional (and hence the existence of its critical points) is crucially
different for p < 2, p = 2, and p > 2; see, e.g., [Drábek, 2002], [Takáč,
2002] and references therein.
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Fibered functional

Let us denote, for simplicity,

Hα(u) :=

∫
Ω

|∇u|p dx − α
∫

Ω

|u|p dx ,

Gβ(u) :=

∫
Ω

|∇u|q dx − β
∫

Ω

|u|q dx .

Consider

t(u) =
|Gβ(u)|

1
p−q

|Hα(u)|
1

p−q

.

Assume that Hα(u) 6= 0. Then t(u)u is a critical point of Eα,β if and
only if u is a critical point of the fibered functional

Jα,β(u) := −sign(Hα(u))
p − q

pq

|Gβ(u)|
p

p−q

|Hα(u)|
q

p−q

.

Note that Eα,β(t(u)u) = Jα,β(u).
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p < 2q

Take any θ ∈ C∞0 (Ω) such that
〈
G ′β(ϕp), θ

〉
< 0. Consider the function

ϕp + εθ.

According to the mean value theorem, there exist ε1 ∈ (0, ε) and
ε2 ∈ (0, ε) such that

0 < Hα(ϕp + εθ) = ε〈H ′α(ϕp + ε1θ), θ〉 ¬ Cε2 for p ­ 2,

Gβ(ϕp + εθ) = ε〈G ′β(ϕp + ε2θ), θ〉 ¬ −Cε < 0.

Using the fibered functional, we obtain

inf
u∈W 1,p

0

Jα,β(u) ¬ −p − q

pq

|Gβ(ϕp + εθ)|
p

p−q

|Hα(ϕp + εθ)|
q

p−q

¬ −C ε
p

p−q−
2q

p−q → −∞

as ε→ 0, whenever p < 2q.
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p ­ 2q
Suppose that inf

u∈W 1,p
0

Jα,β(u) = −∞. Let {un} be the corresponding

minimizing sequence. Let us make the L2-decomposition un = τnϕp + ũn.

Using the improved Poincaré inequality from [Fleckinger-Pellé, Takáč,
2002], we have

Hα(un) ­ C

(∫
Ω

|∇ϕp|p−2|∇ũn|2 dx +

∫
Ω

|∇ũn|p dx
)
.

On the other hand,

|Gβ(un)| ¬ C

(∫
Ω

|∇ϕp|p−2|∇ũn|2 dx +

∫
Ω

|∇ũn|p dx
) 1
2

.

Therefore, noting that ũn → 0 in W 1,p0 , we get

lim inf
n→∞

Jα,β(un) ­ −C lim sup
n→∞

(∫
Ω

|∇ϕp|p−2|∇ũn|2 dx +

∫
Ω

|∇ũn|p dx
) p−2q
2(p−q)

> −∞

as n→∞ since p ­ 2q. A contradiction.
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Thank you for your attention!

λ1(p)

λ1(q)

α

β

α∗

β∗

β∗(α)

βps(α)

Vladimir Bobkov On positive solutions for the (p,q)-Laplacian 14 / 14


	Introduction
	Results
	Sketch of the proof

