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Logistic reaction – diffusion – advection model for
population growth

By the logistic reaction – diffusion – advection model for
population growth we mean the equation{

∂u
∂t = ∇ [∇u − αu∇m] + λu[m(x)− u] Ω× (0,∞)
∂u
∂n − αu

∂m
∂n = 0 ∂Ω× (0,∞)

(logistic)

F. Belgacem, C. Cosner The effects of dispersal along
environmental gradients on the dynamics of populations in
heterogeneous environments, Canadian Applied mathematics
Quarterly, Volume 3 Number 4, 1995.

The effects of the advection term αu∇m depends crucially on
boundary conditions.
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For Danckwerts boundary conditions sufficiently rapid
movements in the direction of m(x) is always beneficial.

In the case of Dirichlet boundary conditions movement up the
gradient of m(x) may be either beneficial or harmful to the
population.
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C. Cosner, Y. Lou Does movement toward better environments
always benefit a population?, J. Math. Anal. Appl. 277
(2003) 489 – 503.

For every α there exists an unique non – negative constant
λ∗ = λ∗(α) such that the following holds

if λ > λ∗ then (logistic) has a unique positive equilibrium
which is globally attractive among non – zero non – negative
solutions of (logistic)
if λ > 0 and 0 < λ ≤ λ∗ then all non negative solutions of
(logistic) converge to zero as t →∞

The constant λ∗ is the principal eigenvalue of an eigenvalue
problem related to (logistic). It can be characterized by

λ∗ = inf
ϕ∈S

∫
Ω eαm|∇ϕ|2∫
Ω eαmmϕ2

where S = {ϕ ∈W 1,2(Ω) :
∫

Ω eαmmϕ2 > 0}
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Two species reaction – diffusion – advection model

By the two species reaction – diffusion – advection model we mean
the system

∂u
∂t = ∇ [µ∇u − αu∇m] + [m(x)− u − v ]u Ω× (0,∞)
∂v
∂t = ∇ [ν∇v − βv∇m] + [m(x)− u − v ]v Ω× (0,∞)

µ∂u∂n − αu
∂m
∂n = 0 ∂Ω× (0,∞)

ν ∂v∂n − βv
∂m
∂n = 0 ∂Ω× (0,∞)

X. Chen, R. Chambrock, Y. Lou Evolution of conditional
dispersal: a reaction – diffusion – advection model, J. Math.
Biol. (2008) 57, 361 – 386

Both species have the same per capita growth rate denoted by
m(x).
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The authors showed that if only one species has a strong tendency
to move upward the environmental gradients the two species can
coexist since one species mainly pursues resources at places of
locally most favorable environments while the other relies on
resources from other parts of the habitat.
If both species have strong biased environments it can lead to
overcrowding of the whole population at places of locally most
favorable environments which causes the extinction of the species
with stronger biased movements.
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Definitions and assumptions

By the nonautonomous competitive reaction – diffusion – advection
system of Kolmogorov type we mean the system

∂ui
∂t

= ∇
[
µi∇ui − αiui∇f̃i (x)

]
+ fi (t, x , u1, . . . , uN)ui ,

t > 0, x ∈ Ω, i = 1, . . . ,N

Biui = 0, t > 0, x ∈ ∂Ω, i = 1, . . . ,N,
(R)

ui (t, x) – population density of the i-th species at time t and
spatial location x ∈ Ω̄,
Ω ⊂ Rn – bounded habitat,
µi > 0 – migration rate of the i-th species,
f̃i (x) = lim inft−s→∞ 1

t−s
∫ t
s fi (τ, x , 0, . . . , 0)dτ are

nonconstant fuctions for i = 1, . . . ,N
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αi ≥ 0 measure the rate at which the population moves up the
gradient of the growth rate f̃i (x) of the ith species.

fi (t, x , u1, . . . , uN) – local per capita growth rate of the i-th
species,
Bi is the Danckwerts boundary operator, or the Dirichlet
boundary operator.

Denote by λi the principal eigenvalue of the following eigenproblem{
µi∇2ϕi (x) + αi∇f̃i (x)∇ϕi (x) = −λi (αi )f̃i (x)ϕi (x) on Ω,

Biϕi = 0 on ∂Ω.

(1)

In the case of Dirichlet boundary conditions it follows that (1) will
always have a unique positive eigenvalue λ1

i (αi ) which is
characterized by having a positive eigenfunction.
In the case of Danckwerts boundary conditions we need the
following lemma
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Lemma 1
The problem (1) subject to Danckwerts boundary conditions has a
unique positive principal eigenvalue λi (αi ) characterized by having
a positive eigenfunction if and only if∫

Ω
f̃i (x)e

αi
µi

f̃i (x)
< 0

We deal with the positive solutions.

Definition
The solution u(t, x) = (u1(t, x), . . . , uN(t, x)) of (R) is positive if
ui (t, x) > 0 for all i = 1, . . . ,N, t ∈ (0, τmax) and x ∈ Ω.
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Now we introduce the following assumptions for a function fi

(A1) fi : [0,∞)× Ω̄× [0,∞)N → R (1 ≤ i ≤ N), as well as their
first derivatives ∂fi/∂t (1 ≤ i ≤ N), ∂fi/∂uj (1 ≤ i , j ≤ N),
and ∂fi/∂xk (1 ≤ i ≤ N, 1 ≤ k ≤ n), are continuous.

(A2) The functions [ [0,∞)× Ω̄ 3 (t, x) 7→ fi (t, x , 0, . . . , 0) ∈ R ],
1 ≤ i ≤ N, are bounded.

Define

ai := inf{ fi (t, x , 0, . . . , 0) : t ≥ 0, x ∈ Ω̄ },
ai := sup{ fi (t, x , 0, . . . , 0) : t ≥ 0, x ∈ Ω̄ }.
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(A3) (∂fi/∂uj)(t, x , u) ≤ 0 for all t ≥ 0, x ∈ Ω̄, u ∈ [0,∞)N ,
1 ≤ i , j ≤ N, i 6= j .

(∂fi/∂uj)(t, x , u1, . . . , uN) measures the influence of the j-th
species on the growth rate of the i-th species. Systems of type (R)
for which (A3) holds we call competitive.

(A4) There exist bii > 0 such that (∂fi/∂ui )(t, x , u) ≤ −bii for all
t ≥ 0, x ∈ Ω̄, u ∈ [0,∞)N , 1 ≤ i ≤ N.
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Fix a positive solution u(t, x) = (u1(t, x), . . . , uN(t, x)) of system
(R). For each 1 ≤ i ≤ N let ξi (t), t ∈ [0,∞), be the positive
solution of the following problem

ξ′i =
(
max
x∈Ω̄

fi (t, x , 0, . . . , 0)− λi (αi )minx∈Ω̄ f̃i (x)− biiξi
)
ξi ,

ξi (0) = sup
x∈Ω̄

ui (0, x).

(2)

Lemma 2

Assume (A1) through (A4) and let āi > 0. Then for each solution
ξi (t) of the problem (2) there holds

lim sup
t→∞

ξi (t) ≤
āi + λi (αi )maxx∈Ω̄ f̃i (x)

bii
, 1 ≤ i ≤ N.
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Lemma 3
Assume (A1) through (A4). Then for any positive solution
u(t, x) = u1(t, x), . . . , uN(t, x) of (R) and any 1 ≤ i ≤ N there
holds

ui (t, x) ≤ ξi (t)e
αi
µi

f̃iϕ(x)

for t ∈ [0, τmax), x ∈ Ω̄ where ξi (t) is the positive solution of (2).
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Lemma 4 [dissipativity]

Assume (A1) through (A4) and (A5) and āi > 0. Then for any
maximally defined positive solution u(t, x) = (u1(t, x),
. . . , uN(t, x)) of system (R) there holds
(i) τmax =∞, and
(ii)

lim sup
t→∞

ui (t, x) ≤
ai + λi (αi )minx∈Ω̄ f̃i (x)

bii
, 1 ≤ i ≤ N,

(3)
uniformly for x ∈ Ω̄.
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(A5) The derivatives ∂fi/∂uj , 1 ≤ i , j ≤ N, are bounded and
Lipschitz continuous on sets of the form [0,∞)× Ω̄× B ,
where B is a bounded subset of [0,∞)N .

Definition
For 1 ≤ i , j ≤ N and ε0 ≥ 0 we define

bij(ε0) := sup
{
− ∂fi
∂uj

(t, x , u) : t ≥ 0, x ∈ Ω̄, u ∈
[
0,

a1

b11
+ ε0

]
× . . .

×
[
0,

aN
bNN

+ ε0

]}
,

bij(0) := bij .

Assumptions (A3) and (A4) imply that bij(ε0) ≥ 0, 1 ≤ i , j ≤ N,
and bii (ε0) > 0, 1 ≤ i ≤ N, whereas it follows from (A5) that
bij(ε0) <∞, and limε0→0+ bij(ε0) = bij , for 1 ≤ i , j ≤ N.
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Averaging

Definition
We define the lower average of a function fi as

m[fi ] := lim inf
t−s→∞

1
t − s

t∫
s

min
x∈Ω̄

fi (τ, x , 0, . . . , 0) dτ,

Definition
We define the upper average of a function fi as

M[fi ] := lim sup
t−s→∞

1
t − s

t∫
s

max
x∈Ω̄

fi (τ, x , 0, . . . , 0) dτ.

(A6) m[fi ] > 0, 1 ≤ i ≤ N.
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Permanence in reaction – diffusion – advection system of
Kolmogorov type

Definition
System (R) is permanent, if there exist positive constants δi and Ri

such that for each positive solution u(t, x) = (u1(t, x), . . . ,
uN(t, x)) of system (R) there exists T = T (u) > 0 with the
property

δiϕi (x) ≤ ui (t, x) ≤ Ri (permanence)

for all 1 ≤ i ≤ N, t ≥ T , x ∈ Ω̄.
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Average conditions for permanence in reaction – diffusion –
advection system of Kolmogorov type

m[fi ] > λiµi +
N∑
j=1
j 6=i

e
αj
µj

maxx∈Ω̄ f̃j (x) bij(M[fj ]− λj(αj)minx∈Ω̄ f̃j(x))

bjj
,

1 ≤ i ≤ N,

(AC)
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Theorem 1 [Main Theorem]

Assume (A1) through (A6). If (AC) holds then system (R) is
permanent.

J. Balbus Permanence in N species nonautonomous
competitive reaction – diffusion – advection system of
Kolmogorov type in heterogeneous environment, submitted for
publication.

The following result will be useful to prove Theorem 1.
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Permanence in logistic equation of ODEs

Proposition 2 [Vance - Coddington Estimates]

Let c : [t0,∞)→ R, where t0 ≥ 0, be a bounded continuous
function, where c∗ > 0 and c∗ > 0 are such that −c∗ ≤ c(t) ≤ c∗

for all t ≥ t0, and let d > 0. Assume moreover that there are L > 0
and β > 0 such that

1
L

t+L∫
t

c(τ) dτ ≥ β

for all t ≥ t0.
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Proposition 2 [Vance - Coddington Estimates] continued

Then for any solution ζ(t) of the initial value problem{
ζ ′ = (c(t)− dζ)ζ

ζ(t0) = ζ0,

where ζ0 > 0, there holds

β

d
e−L(c∗+β) ≤ lim inf

t→∞
ζ(t) ≤ lim sup

t→∞
ζ(t) ≤ c∗

d
.

(permanence-logistic)

R. R. Vance and E. A. Coddington, A nonautonomous model
of population growth, J. Math. Biol. 27 (1989), no. 5,
491–506.
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proof of Theorem 1

The right-hand side of the inequality (permanence) is satisfied by
Lemma 3 (ii). By assumption (A5) we can choose ε0 > 0 such that

m[fi ] > λiµi +
N∑
j=1
j 6=i

e
αj
µj

maxx∈Ω̄ f̃j (x) bij(ε0)M[fj ]− λj(αj)minx∈Ω̄ f̃j(x)

bjj
,

1 ≤ i ≤ N,

for all 1 ≤ i ≤ N.
Fix a positive solution u(t, x) = (u1(t, x), . . . , uN(t, x)) of system
(R). Let ξi (t), 1 ≤ i ≤ N, t ≥ 0, be the solutions of (2). Fix
1 ≤ i ≤ N.

Joanna Balbus Average conditions for permanence in N species nonautonomous competitive reaction – diffusion – advection systems.



Previous results
Definitions and assumptions

Permanence
Permanence in reaction – diffusion – advection system of Kolmogorov type

sketch of the proof of Theorem 1 [continued]

Let t0 > 0 be such a moment that

u(t, x) ∈
[
0,

a1

b11
+ ε0

]
× · · · ×

[
0,

aN
bNN

+ ε0

]
for t > t0 x ∈ Ω̄.

Let ηi (t), t ≥ t0, be the positive solution of the following problem

η′i =
(
min
x∈Ω̄

fi (t, x , 0, . . . , 0)− λi (αi )maxx∈Ω̄ f̃i (x)− bii (ε0)ηi−
N∑
j=1
j 6=i

bij(ε0)ξj(t)e
αj
µj

maxx∈Ω̄ fj (x))
ηi

ηi (t0) = inf
x∈Ω

ui (t0,x)
ϕi (x) .

(4)

It is easy to see that ui (t, x) ≥ ηi (t)e
αi
µi

f̃i (x)
ϕi (x) for all t ≥ t0 and

x ∈ Ω̄.
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sketch of the proof of Theorem 1 [continued]

Now we apply Proposition 1 to (4) where

c(t) = min
x∈Ω̄

fi (t, x , 0, . . . , 0)−λiµi−
N∑
j=1
j 6=i

bij(ε0)ξj(t) i d = bii (ε0).
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sketch of the proof Theorem 1 [continued]

To prove the permanence of system (R) we show that the
parameters in Theorem 1 do not depend on the solution u(t, x), for
sufficiently large t.
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