Localized extrema of ground state solution for nonlinear Schrödinger equation with non-monotone potential

Mervan Pašić

Zagreb, Croatia

On an arbitrary interval [a, b], we give some conditions for the potentials: $\mu \in \mathbb{R}$ - chemical, V(x) - non-monotone external and f(x, s) - nonlinear, such that every non-negative solution u = u(x), $x \in \mathbb{R}$, of the nonlinear Schrödinger equation:

$$u'' + \left(\mu - \frac{2m}{h^2}V(x)\right)u + \frac{2m}{h^2}f(x,|u|^2)u = 0,$$
(1)

has a local maximum in [a, b]: [there exists a point $x_* = x_*(u) \in [a, b]$ such that $u'(x_*) = 0$ and $u(x_*) > u(x)$ for all $x \in (x_* - \varepsilon, x_* + \varepsilon)$ and some $\varepsilon = \varepsilon(u) > 0$]. As a consequence, it follows:

Corollary. Let $f(x,s) \ge -g(x)$, $s \ge 0$, $x \in \mathbb{R}$, where $g(x) \le 0$ or $g(x) \equiv 0$ - the general attractive case of f(x,s) and $g(x) \ge 0$, $g(x) \not\equiv 0$ - a special repulsive case of f(x,s). If we suppose that

$$\mu - \frac{2m}{h^2} \left(V(x) + g(x) \right) > \lambda_1 \quad in \ [a, b], \tag{2}$$

where λ_1 is the first eigenvalue of the Laplacian operator in (a,b): $[\varphi'' + \lambda_1 \varphi = 0$ in (a,b) for some $\varphi \in C_0([a,b]) \cap C^2(a,b)]$, then every solution u(x) of (1) has a stationary point $x^* \in [a,b]$.

Moreover, if $u(x) \ge 0$ *in* [a, b] *and* u(x) *possesses at most finite number of zeros in* [a, b]*, then the point* x^* *is unique as well as* u(x) *attains its local maximum at* x^* .

If $g(x) \equiv 0$, then by (2) it takes for [a, b] an interval where V(x) attains its local minimum.

This talk is organized as follows: **1**. experimental verification of Bose-Enstein condensate - BEC, **2**. nonlinear Schrödinger equation as a mathematical model for BEC, **3**. numerical and exact solution verifications for the non-monotonic behaviour of particle density in BEC, **4**. mathematical proof for the non-monotonic behaviour of particle density in BEC and main results.

2010 Mathematics Subject Classification: 35Q55, 34C60, 34M33.

References

- J. Belmonte-Beitia, V.V. Konotop, V.M. Perez-Garcia, V.E. Vekslerchik, Localized and periodic exact solutions to the nonlinear Schrödinger equation with spatially modulated parameters: linear and nonlinear lattices, Chaos, Solitons and Fractals 41 (2009), 1158–1166.
- [2] M. Pašić, Strong non-monotonic behavior of particle density of solitary waves of nonlinear Schrödinger equation in Bose-Einstein condensates, Commun. Nonlinear Sci. Numer. Simul. 29 (2015), 161–169.
- [3] M. Pašić, Sign-changing first derivative of positive solutions of forced second-order nonlinear differential equations, Appl. Math. Lett. 40 (2015), 40–44.
- [4] M. Pašić, *Existence of localized maxima of non-negative ground state solution of nonlinear Schrödinger equation with non-monotone potential*, in preparation.
- [5] D. E. Pelinovsky, *Localization in Periodic Potentials: from Schrödinger operators to the Gross-Pitaevskii equation*, London Mathematical Society Lecture Note Series: 390, Cambridge University Press, 2011.