How to determine the shape of the human cornea: a contribution from nonlinear analysis

Pierpaolo Omari

Trieste, Italy

In this talk I will present some results, that have recently been obtained in [1, 2, 3, 4] and concern the following prescribed anisotropic mean curvature equation with Dirichlet boundary conditions:

$$\begin{cases} -\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = -au + \frac{b}{\sqrt{1+|\nabla u|^2}} & \text{in }\Omega,\\ u = 0 & \text{on }\partial\Omega. \end{cases}$$
(1)

Here, $\Omega \subset \mathbb{R}^N$ is a bounded regular domain and a, b > 0 are real parameters.

This quasilinear problem was introduced in [5, 6] in order to provide a mathematical model for describing the geometry of the human cornea.

I aim to show how various techniques of nonlinear analysis, from elementary to more sophisticated, can successfully be combined to derive a rather complete picture of the solvability patterns of problem (1), including existence, uniqueness, regularity, boundary behaviour, stability of solutions, as well as information on the structure of the solution set.

2010 Mathematics Subject Classification: 35J93.

References

- [1] I. Coelho, C. Corsato and P. Omari, *A one-dimensional prescribed curvature equation modeling the corneal shape*, Bound. Value Probl. 2014, 2014:127.
- [2] C. Corsato, C. De Coster and P. Omari, *Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape*, Discrete Contin. Dyn. Syst. 2015 Suppl. (2015), 297–303.
- [3] C. Corsato, C. De Coster and P. Omari, *The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions*, J. Differential Equations 260 (2016), 4572–4618.
- [4] C. Corsato, C. De Coster, F. Obersnel, P. Omari and A. Soranzo, A prescribed anisotropic mean curvature equation modeling the corneal shape: a paradigm of nonlinear analysis, Discrete Contin. Dyn. Syst. Ser. S (2017), 1–44 (in press).
- [5] W. Okrasiński and Ł. Płociniczak, *A nonlinear mathematical model of the corneal shape*, Nonlinear Anal. Real World Appl. 13 (2012), 1498–1505.
- [6] W. Okrasiński and Ł. Płociniczak, Bessel function model for corneal topography, Appl. Math. Comput., 223 (2011), 436–443.