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In this talk, we consider a family of nonlinear delayed reaction-diffusion equations

ut(t, x) = uxx(t, x)− u(t, x) + g(u(t− h, x)), (1)

with h > 0. In our case, the non-linear reaction term g(x) satisfies the following conditions: (i)
g(0) = 0, g(κ) = κ, for some κ > 0; (ii) g′(0) >1, g′(κ) < 0; (iii) g(x) > 0, ∀ x ∈ (0, κ) i.e. equation
(1) has two constant solutions u0 ≡ 0, uκ ≡ κ.

A traveling wave solution of (1) is a positive solution u(t, x) = Φ(x+ ct), where the wave’s shape
φ : R→ R satisfies φ(−∞) = 0, φ(+∞) = κ and the constant c > 0 is called wave’s speed.

For some specifics type of g (see [4, 1]) and for some parameters h, c, the shape of the traveling
wave for (1) could be of the following different forms: (i) monotone increasing, (ii) eventually
monotone, non-monotone(finite oscillations) (iii) slowly oscillating(infinity oscillations).

The family (1) includes some classical models from biology, intensively studied, such as Nichol-
son’s Blowflies equation and Mackey-Glass equation where the three geometric possibilities for the
wave’s shape have been observed numerically or analytically in some cases (see [5, 4, 1]). It is re-
markable that each of the geometric possibilities has a biological interpretation [3, 1] which makes
interesting to know the existence of them. In this work, we analyze the existence of a eventually
monotone, non-monotone traveling wave for the classical Nicholson’s blowflies equation (that is,
with g(x) = p

δ x e−x in (1)) for some values of parameters p, δ, h and c.
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