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Consider the equation

y(n) = p(x, y, y′, . . . , y(n−1))|y|k sign y, n > 4, k > 1. (1)

A new result is proved on asymptotic behavior of blow-up and Kneser (see [1, Definition 13.1])
solutions to this equation.

Theorem 1. Suppose p ∈ C(Rn+1)
⋂
Lipy0,...,yn−1(Rn) and p → p0 > 0 as x → x∗, y0 →

∞, . . . , yn−1 →∞. Then for any integer n > 4 there exists K > 1 such that for any real k ∈ (1,K),
any solution to equation (1) tending to +∞ as x → x∗ − 0 has power-law asymptotic behavior,
namely y(x) = C(x∗ − x)−α(1 + o(1)) with

α =
n

k − 1
, Ck−1 =

1

p0

n−1∏
j=0

(j + α) . (2)

Theorem 2. Suppose p ∈ C(Rn+1)
⋂
Lipy0,...,yn−1(Rn) and (−1)n p → p0 > 0 as x → ∞, y0 →

0, . . . , yn−1 → 0. Then for any integer n > 4 there exists K > 1 such that all Kneser solutions
to equation (1) with any real k ∈ (1,K) tend to zero with power-law asymptotic behavior, namely
y(x) = C(x− x∗)−α(1 + o(1)), x→∞, with some x∗ and α, C given by (2).

Earlier it was proved that for n = 3, 4 all blow-up and Kneser solutions to equation (1) have the
power-law asymptotic behavior (see [2]). It was also proved for equation (1) with (−1)n p ≡ p0 > 0
for sufficiently large n (see [3]) and for n = 12, 13, 14 (see [4]) that there exists k > 1 such that
equation (1) has a solution with non-power-law behavior, namely y(x) = (x−x∗)−α h(log (x−x∗)),
where h is a positive periodic non-constant function on R. For blow-up solutions see also [4, 5].
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